Preview

Сибирский научный медицинский журнал

Расширенный поиск

Роль цитокинов в патогенезе злокачественных новообразований

https://doi.org/10.18699/SSMJ20230202

Аннотация

В работе проведен анализ литературных данных о роли цитокинов в патогенезе злокачественных новообразований (ЗНО). Цитокины – биологически активные гормоноподобные белки, регулирующие широкий спектр процессов, протекающих в организме. Цитокины определяют тип и длительность иммунного ответа, стимуляцию или подавление роста клеток, их дифференцировку, функциональную активность. Комплекс цитокинов, продуцируемых в микроокружении опухоли, играет важную роль в патогенезе ЗНО. Спектры биологических активностей цитокинов в большинстве случаев перекрываются. Один и тот же процесс в клетке может стимулироваться более чем одним цитокином, создавать благоприятную среду для инициации и прогрессирования ЗНО. Иммунная система может распознавать трансформированные клетки. Различные цитокины соответствуют специфическим путям, активируемым рецепторами на поверхности клетки, которые в свою очередь активируют внутриклеточные сигнальные каскады, влияющие на целевые клеточные функции. Гены цитокинов взаимно связаны с онкогенами. Цитокины, которые высвобождаются в ответ на инфекцию, воспаление или в ходе иммунного ответа на антиген, могут подавлять развитие опухоли. В свою очередь цитокины, которые ослабляют апоптоз и способствуют инвазии и метастазированию, усиливают рост опухоли. Цитокины участвуют в инициации, развитии и метастазировании злокачественных новообразований посредством различных механизмов.

Об авторах

В. Л. Рыбкина
Южно-Уральский институт биофизики ФМБА России
Россия

 Рыбкина Валентина Львовна, д.м.н.

456780, г. Озерск, Озерское шоссе, 19



Г. В. Адамова
Южно-Уральский институт биофизики ФМБА России
Россия

 Адамова Галина Владимировна

456780, г. Озерск, Озерское шоссе, 19



Д. С. Ослина
Южно-Уральский институт биофизики ФМБА России
Россия

 Ослина Дарья Сергеевна 

456780, г. Озерск, Озерское шоссе, 19



Список литературы

1. Grivennikov S.I., Greten F.R., Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–899. doi: 10.1016/j.cell.2010.01.025

2. Knuth A., Danowski B., Oettgen H.F., Old L.J. T-cell-mediated cytotoxicity against autologous malignant melanoma: analysis with interleukin 2-dependent T-cell cultures. Proc. Natl. Acad. Sci. USA. 1984;81:3511–3515. doi: 10.1073/pnas.81.11.3511

3. van der Bruggen P., Traversari C., Chomez P., Lurquin C., de Plaen E., van den Eynde B., Knuth A., Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991;254:1643–1647. doi:10.1126/science.1840703

4. Sahin U., Tureci O., Pfreundschuh M. Serological identifcation of human tumor antigens. Curr. Opin. Immunol. 1997;9:709–716. doi: 10.1016/s0952-7915(97)80053-2

5. Lee P.P., Yee C., Savage P.A., Fong L., Brockstedt D., Weber Y.S., Johnson D., Swetter S., Thompson J., Greenberg P.D., Roederer M., Davis M.M. Characterization of circulating T cells specif c for tumor-associated antigens in melanoma patients. Nat. Med. 1999;5:677–685. doi: 10.1038/9525

6. Whiteside T.L. Inhibiting the inhibitors: evaluating agents targeting cancer immunosuppression. Expert. Opin. Biol. Ther. 2010;10:1019–1035. doi:10.1517/14712598.2010.482207

7. Frey A.B., Monu N. Effector-phase tolerance: another mechanism of how cancer escapes antitumor immune response. J. Leukoc. Biol. 2006;79:652–662. doi: 10.1189/jlb.1105628

8. Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer. 2005;5:263–274. doi: 10.1038/nrc1586

9. Горелов А.И., Симбирцев А.С., Журавский Д.А., Горелова А.А. Ингибиторы PD-1/PDL1 в лечении рака мочевого пузыря: от медиатора иммунного ответа к таргетной терапии. Урол. ведомости. 2018;8(2):64–72. doi: 10.17816/uroved8264-72

10. Dunn G.P., Koebel C.M., Schreiber R.D. Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol. 2006;6:836–848. doi: 10.1038/nri1961

11. Dunn G.P., Old L.J., Schreiber R.D. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21:137–148. doi: 10.1016/j.immuni.2004.07.017

12. Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013

13. Савельева О.Е., Перельмутер В.М., Таширева Л.А., Денисов Е.В., Исаева А.В. Воспаление как терапевтическая мишень при комплексном лечении злокачественных опухолей. Сиб. онкол. ж. 2017;16(3):65–78. doi: 10.21294/1814-4861-2017-16-3-65-78

14. Mantovani A., Allavena P., Sica A., Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–444. doi: 10.1038/nature07205

15. Greten F.R., Grivennikov S.I. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019;51(1):27–41. doi: 10.1016/j.immuni.2019.06.025

16. Hussain S.P., Hofseth L.J., Harris C.C. Radical causes of cancer. Nat. Rev. Cancer. 2003;3:276–285. doi: 10.1038/nrc1046

17. Dongli Y., Elnera S.G., Biana Z.M., Tillb G.O., Pettya H.R., Elner V.M. Proinflammatory cytokines increase reactive oxygen species through mitochondria and NADPH oxidase in cultured RPE cells. Exp. Eye Res. 2007;85(4):462–472. doi: 10.1016/j.exer.2007.06.013

18. Gronke K., Hernández P.P., Zimmermann J., Klose C.S.N., Kofoed-Branzk M., Guendel F., Witkowski M., Tizian C., Amann L., Schumacher F., … Diefenbach A. Interleukin-22 protects intestinal stem cells against genotoxic stress. Nature. 2019;566:249–253. doi: 10.1038/s41586-019-0899-7

19. Grivennikov S.I. Inflammation and colorectal cancer: colitis-associated neoplasia. Semin. Immunopathol. 2013;35:229–244. doi: 10.1007/s00281-012-0352-6

20. Yang Z.H., Dang Y.-Q., Ji G. Role of epigenetics in transformation of inflammation into colorectal cancer. World J. Gastroenterol. 2019;25(23):2863–2877. doi: 10.3748/wjg.v25.i23.2863

21. Yasmin R., Siraj S., Hassan A., Khan A.R., Abbasi R., Ahmad N. Epigenetic regulation of inflammatory cytokines and associated genes in human malignancies. Mediat. Inflammation. 2015;2015:201703.doi:10.1155/2015/201703

22. Louis I.V.S., Bohjanen P.R. Post-transcriptional regulation of cytokine and growth factor signaling in cancer. Cytokine Growth Factor Rev. 2017;33:83–93. doi: 10.1016/j.cytogfr.2016.11.004

23. Langowski J.L., Zhang X., Wu L., Mattson J.D., Chen T., Smith K., Basham B., McClanahan T., Kastelein R.A., Oft M. IL-23 promotes tumour incidence and growth. Nature. 2006;442:461–465. doi: 10.1038/nature04808

24. Kwong J., Chan F.L., Wong K., Birrer M.J., Archibald K.M., Balkwill F.R., Berkowitz R.S., Mok S.C. Inflammatory cytokine tumor necrosis factor a confers precancerous phenotype in an organoid model of normal human ovarian surface epithelial cells. Neoplasia. 2009;11(6):529–541. doi: 10.1593/neo.09112

25. Veldhoen M. Interleukin 17 is a chief orchestrator of immunity. Nat. Immunol. 2017;18:612–621. doi:10.1038/ni.3742

26. Qian Y., Liu C., Hartupee J., Altuntas C.Z., Gulen M.F., Jane-Wit D., Xiao J., Lu Y., Giltiay N., Liu J., … Li X. The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nat. Immunol. 2007;8:247–256. doi: 10.1038/ni1439

27. Gӧktuna S.I., Shostak K., Chau T.L., Heukamp L.C., Hennuy B., Duong H.Q., Ladang A., Close P., Klevernic I., Olivier F., … Chariot A. The prosurvival IKK-related kinase IKKε integrates LPS and IL17A signaling cascades to promote Wnt-dependent tumor development in the intestine. Cancer Res. 2016;76:2587–2599. doi: 10.1158/0008-5472.CAN-15-1473

28. Zepp J.A., Zhao J., Liu C., Bulek K., Wu L., Chen X., Hao Y., Wang Z., Wang X., Ouyang W., … Li X. IL-17A-induced PLET1 expression contributes to tissue repair and colon tumorigenesis. J. Immunol. 2017;199:3849–3857. doi: 10.4049/jimmunol.1601540

29. Wang K., Kim M.K., Caro G., Wong J., Shalapour S., Wan J., Zhang W., Zhong Z., Sanchez-Lopez E., Wu L.W., … Karin M. Interleukin-17 receptor a signaling in transformed enterocytes promotes early colorectal tumorigenesis. Immunity. 2014;41:1052–1063. doi: 10.1016/j.immuni.2014.11.009

30. Geismann C., Schäfer H., Gundlach J.P., Hauser C., Egberts J.H., Schneider G., Arlt A. NF-B dependent chemokine signaling in pancreatic cancer. Cancers. 2019;11:1445. doi: 10.3390/cancers11101445

31. Putoczki T.L., Thiem S., Loving A., Busuttil R.A., Wilson N.J., Ziegler P.K., Nguyen P.M., Preaudet A., Farid R., Edwards K.M., … Ernst M. Interleukin-11 is the dominant IL-6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically. Cancer Cell. 2013;24:257–271. doi: 10.1016/j.ccr.2013.06.017

32. Galdiero M.R., Marone G., Mantovani A. Cancer inflammation and cytokines. Cold Spring Harb. Perspect. Biol. 2018;10(8):a028662. doi: 10.1101/cshperspect.a028662

33. Zaalberg A., Moradi Tuchayi S., Ameri A.H., Ngo K.H., Cunningham T.J., Eliane J.P., Livneh M., Horn T.D., Rosman I.S., Musiek A., … Demehri S. Chronic inflammation promotes skin carcinogenesis in cancer-prone discoid lupus erythematosus. J. Investig. Derm. 2019;139:62–70. doi: 10.1016/j.jid.2018.06.185

34. Quinn K.M., Kartikasari A.E., Cooke R.E., Koldej R.M., Ritchie D.S., Plebanski M. Impact of age-, cancer- and treatment-driven inflammation on T cell function and immunotherapy. J. Leukocyte Biol. 2020;953–965. doi: 10.1002/JLB.5MR0520-466R

35. Greten F.R., Eckmann L., Greten T.F., Park J.M., Li Z.W., Egan L.J. IKKb links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell. 2004;118(3):285–296. doi: 10.1016/j.cell.2004.07.013

36. Barnes P.J., Karin M. Nuclear factor-kB: a pivotal transcription factor in chronic inflammatory diseases. New Engl. J. Med. 1997;336(15):1066–1071. doi: 10.1056/NEJM199704103361506

37. Mussbacher M., Salzmann M., Brostjan C., Hoesel B., Schoergenhofer C., Datler H., Hohensinner P., Basílio J., Petzelbauer P., Assinger A., Schmid J.A. Cell type-specifc roles of NF-kb linking inflammation and thrombosis. Front. Immunol. 2019;10:85. doi: 10.3389/fmmu.2019.00085

38. Xia Y., Shen S., Verma I.M. NF-kb, an active player in human cancers. Cancer Immunol. Res. 2014;2(9):823–830. doi: 10.1158/2326-6066.CIR-14-0112

39. Kaltschmidt C., Banz-Jansen C., Benhidjeb T., Beshay M., Förster C., Greiner J., Hamelmann E., Jorch N., Mertzlufft F., Pftzenmaier J., …Kaltschmidt B. A role for NF-kb in organ specifc cancer and cancer stem cells. Cancers (Basel). 2019;11(5):655. doi: 10.3390/cancers11050655

40. Gonzalez H., Hagerling C., Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 2018;32(19-20):1267–1284. doi: 10.1101/gad.314617.118

41. Liu P., Wang Y., Li X. Targeting the untargetable KRAS in cancer therapy. Acta Pharm. Sin. B. 2019;9(5):871–879. doi: 10.1016/j.apsb.2019.03.002

42. Davalos A.R., Coppe J.-P., Campisi J., Desprez P.Y. Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev. 2010;29(2):273–283. doi: 10.1007/s10555-010-9220-9

43. Epling-Burnette P., Liu J.H., Catlett-Falcone R., Turkson J., Oshiro M., Kothapalli R., Li Y., Wang J.M., Yang-Yen H.F., Karras J., Jove R., Loughran T.P.Jr. Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 Expression. J. Clin. Invest. 2001;107(3):351–362. doi:10.1172/JCI9940

44. Leslie K., Lang C., Devgan G., Azare J., Berishaj M., Gerald W., Kim Y.B., Paz K., Darnell J.E., Albanese C., … Bromberg J. Cyclin D1 is transcriptionally regulated by and required for transformation by activated signal transducer and activator of transcription 3. Cancer Res. 2006;66(5):2544–2552. doi:10.1158/0008-5472.CAN-05-2203

45. Gasche J.A., Hoffmann J., Boland C.R., Goel A. Interleukin-6 promotes tumorigenesis by altering DNA methylation in oral cancer cells. Int. J. Cancer. 2011;129(5):1053–1063. doi: 10.1002/ijc.25764

46. Malinowska K., Neuwirt H., Cavarretta I.T., Bektic J., Steiner H., Dietrich H., Moser P.L., Fuchs D., Hobisch A., Culig Z. Interleukin-6 stimulation of growth of prostate cancer in vitro and in vivo through activation of the androgen receptor. Endocr. Relat. Cancer. 2009;16(1):155–169. doi: 10.1677/ERC-08-0174

47. Corvinus F.M., Orth C., Moriggl R., Tsareva S.A., Wagner S., Pftzner E.B., Baus D., Kaufmann R., Huber L.A., Zatloukal K., … Friedrich K. Persistent STAT3 activation in colon cancer is associated with enhanced cell proliferation and tumor growth. Neoplasia. 2005;7(6):545–555. doi: 10.1593/neo.04571

48. Аутеншлюс А.И., Соснина А.В., Михайлова Е.С., Морозов Д.В., Вараксин Н.А., Рукавишников М.Ю., Козлова Ю.Н., Каньшина А.В. Цитокины и патогистологическая картина злокачественных новообразований при раке желудочно-кишечного тракта. Мед. иммунология. 2009;11(1):29–34.

49. Камышов С.В., Тилляшайхов М.Н. Дисбаланс в системе цитокинов у больных раком яичников. Ж. теор. и клин. мед. 2018;(4):88–90.

50. Silva E.M., Mariano V.S., Pastrez P.R.A., Pinto M.C., Castro A.G., Syrjanen K.J., LongattoFilho A. High systemic IL-6 is associated with worse prognosis in patients with non-small cell lung cancer. PLoS One. 2017;12(7):e0181125. doi: 10.1371/journal.pone.0181125

51. Masjedi A., Hashemid V., Hojjat-Farsangie M., Ghalamfarsag G., Azizih G., Yousef M., Jadidi-Niaragh F. The signifcant role of interleukin-6 and its signaling pathway in the immunopathogenesis and treatment of breast cancer. Biomed. Pharmacother. 2018;108:1415–1424. doi: 10.1016/j.biopha.2018.09.177

52. Turano M., Cammarota F., Duraturo F., Izzo P., de Rosa M. A potential role of IL-6/IL-6R in the development and management of colon cancer. Membranes (Basel). 2021;11:312. doi: 10.3390/membranes11050312

53. Зейдлиц А.А., Наров Ю.Э. Особенности содержания цитокинов в сыворотке крови у пациентов при раке лeгкого. Междунар. ж. прикл. и фундам. исслед. 2013;6:124–125.

54. Cooks T., Pateras I.S., Tarcic O., Solomon H., Schetter A.J., Wilder S., Lozano G., Pikarsky E., Forshew T., Rosenfeld N., … Oren M. Mutant P53 Prolongs NF-kB activation and promotes chronic inflammation and inflammation-associated colorectal cancer. Cancer Cell. 2013;24(2):272. doi: 10.1016/j.ccr.2013.03.022

55. Schneider G., Henrich A., Greiner G., Wolf V., Lovas A., Wieczorek M., Wagner T., Reichardt S., von Werder A., Schmid R.M., … Krämer O.H. Cross talk between stimulated NF-kb and the tumor suppressor P53. Oncogene. 2010;29(19):2795–2806. doi: 10.1038/onc.2010.46

56. Cai X., Cao C., Li J., Chen F., Zhang S., Liu B., Zhang W., Zhang X., Ye L. Inflammatory factor TNF-a promotes the growth of breast cancer via the positive feedback loop of TNFR1/NF-kb (and/or P38)/P-STAT3/HBXIP/ TNFR1. Oncotarget. 2017;8(35):58338. doi:10.18632/oncotarget.16873

57. Zhang G.-P., Yue X., Li S.-Q. Cathepsin C interacts with TNF-a/P38 MAPK signaling pathway to promote proliferation and metastasis in hepatocellular carcinoma. Cancer Res. Treatment. 2020;52(1):10–23. doi: 10.4143/crt.2019.145

58. Charles K.A., Kulbe H., Soper R., Escorcio-Correia M., Lawrence T., Schultheis A., Chakravarty P., Thompson R.G., Kollias G., … Hagemann T. The tumor-promoting actions of TNF-a involve TNFR1 and IL-17 in ovarian cancer in mice and humans. J. Clin. Invest. 2009;119(10):3011–3023. doi: 10.1172/JCI39065

59. Suarez-Cuervo C., Harris K.W., Kallman L., Väänänen H.K., Selander K.S. Tumor necrosis factor-a induces Interleukin-6 production via extracellular-regulated kinase 1 activation in breast cancer cells. Breast. Cancer Res. Treat. 2003;80(1):1–8. doi: 10.1023/A:1024443303436

60. Balkwill F. Tumour necrosis factor and cancer. Nat. Rev. Cancer. 2009;9:361–371. doi: 10.1038/nrc2628

61. Stathopoulos G.T., Kollintza A., Moschos C., Psallidas I., Sherrill T.P., Pitsinos E.N., Vassiliou S., Karatza M., Papiris S.A., Graf D., … Kalomenidis I. Tumor necrosis factor-alpha promotes malignant pleural effusion. Cancer Res. 2007;67:9825–9834. doi: 10.1158/0008-5472.CAN-07-1064

62. Shang G.S., Liu L., Qin Y.W. IL-6 and TNF-α promote metastasis of lung cancer by inducing epithelial-mesenchymal transition. Oncol. Lett. 2017;13:4657–4660. doi: 10.3892/ol.2017.6048

63. Warsinggih, Limanu F., Labeda I., Lusikooy R.E., Mappincara, Faruk M. The relationship of tumor necrosis factor alpha levels in plasma toward the stage and differentiation degree in colorectal cancer. Medicina. Clínica. Práctica. 2021;4:100224. doi:10.1016/j.mcpsp.2021.100224

64. Cui X., Zhang H., Cao A., Cao L., Hu X. Cytokine TNF-α promotes invasion and metastasis of gastric cancer by down-regulating Pentraxin3. Journal of Cancer. 2020;1111(7):1800–1807. doi: 10.7150/jca.39562

65. Teicher B.A. Transforming growth factor-beta and the immune response to malignant disease. Clin. Cancer Res. 2007;13:6247–6251. doi: 10.1158/1078-0432.CCR-07-1654

66. Nie E., Jin X., Miao F., Yu T., Zhi T., Shi Z., Wang Y., Zhang J., Xie M., You Y. TGF-β1 modulates temozolomide resistance in glioblastoma via altered microRNA processing and elevated MGMT. Neuro-Oncology. 2021;23(3):435–446. doi:10.1093/neuonc/noaa198

67. Braun D.A., Fribourg M., Sealfon S.C. Cytokine response is determined by duration of receptor and signal transducers and activators of transcription 3 (STAT3) activation. J. Biol. Chem. 2013;288(5):2986–2993. doi: 10.1074/jbc.M112.386573

68. Chen L., Shi Y., Zhu X., Guo W., Zhang M., Che Y., Tang L., Yang X., You Q., Liu Z. IL-10 secreted by cancer−associated macrophages regulates proliferation and invasion in gastric cancer cells via C−Met/STAT3 signaling. Oncol. Rep. 2019;42(2):595–604. doi: 10.3892/or.2019.7206

69. Абакумова Т.В., Антонеева И.И., Генинг Т.П., Долгова Д.Р., Генинг С.О., Воронова О.С., Волгина И.В. Функциональное состояние микрофагоцитов периферической крови и спектр продуцируемых ими цитокинов при раке шейки матки. Ульян. мед.-биол. ж. 2013;(3):57–64.

70. Алимходжаева Л.Т. Диагностическое значение изучения уровней про- и противовоспалительных цитокинов иммунной системы у больных раком молочной железы. Опухоли жен. репродуктивной сист. 2009;3:49–52. [In Russian].

71. Zhao S., Wu D., Wu P., Wang Z., Huang J. Serum IL-10 PredictsWorse Outcome in Cancer Patients: A Meta-Analysis. PLoS ONE. 2015;10:e0139598. doi:10.1371/journal.pone.0139598

72. Cam C., Karagoz B., Muftuoglu T., Bigi O., Emirzeoglu L., Celik S., Ozgun A., Tuncel T., Top C. The inflammatory cytokine interleukin-23 is elevated in lung cancer, particularly small cell type. Contemp. Oncol. (Pozn). 2016;20:215–219. doi: 10.5114/wo.2016.61562

73. Fukuda M., Ehara M., Suzuki S., Sakashita H. Expression of interleukin-23 and its receptors in human squamous cell carcinoma of the oral cavity. Mol. Med. Rep. 2010;3:89–93. doi: 10.3892/mmr_00000223

74. Smyth M.J., Thia K.Y., Street S.E., Cretney E., Trapani J.A., Taniguchi M., Kawano T., Pelikan S.B., Crowe N.Y., Godfrey D.I. Differential tumor surveillance by natural killer (NK) and NKT cells. J. Exp.Med. 2000;191:661–668. doi: 10.1084/jem.191.4.661

75. Tugues S., Burkhard S.H., Ohs I., Vrohlings M., Nussbaum K., vom Berg J., Kulig P . , Becher B. New insights into IL-12-mediated tumor suppression. Cell Death. Differ. 2015;22:237–246. doi:10.1038/cdd.2014.134

76. Youssef S.S., Mohammad M.M., Ezz-El-Arab L.R. Clinical signifcance of serum IL-12 level in patients with early breast carcinoma and its correlation with other tumor markers. OA Maced. J. Med. Sci. 2015;3(4):640–644. doi: 10.3889/oamjms.2015.106

77. O’Hara R.J., Greenman J., MacDonald A.W., Gaskell K.M., Topping K.P., Duthie G.S., Kerin M.J., Lee P.W., Monson J.R. Advanced colorectal cancer is associated with impaired interleukin 12 and enhanced interleukin 10 production. Clin. Cancer Res. 1998;4(8):1943–1948.

78. Song M., Ping Y., Zhang K., Yang L., Li F., Zhang C., Cheng S., Yue D., Maimela N.R., Qu J., … Zhang Y. Low-dose IFN-γ induces tumor cell stemness in tumor microenvironment of non-small cell lung cancer. Cancer Res. 2019;79(14):3737–3748. doi: 10.1158/0008-5472.CAN-19-0596

79. Kammertoens T., Sommermeyer D., Loddenkemper C., Loew R., Uckert W., Blankenstein T., Kammertoens T. Tumor rejection by local interferon gamma induction in established tumors is associated with blood vessel destruction and necrosis. Int. J. Cancer. 2011;128:371–378. doi: 10.1002/ijc.25350

80. Lippitz B.E. Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol. 2013;14: 218–228. doi: 10.1016/S1470-2045(12)70582-X

81. Takeda K., Nakayama M., Hayakawa Y., Kojima Y., Ikeda H., Imai N., Ogasawara K., Okumura K., Thomas D.M., Smyth M.J. IFN-g is required for cytotoxic T cell-dependent cancer genome immunoediting. Nat. Commun. 2017;8(14607):1–12. doi: 10.1038/ncomms14607

82. Lane R.S., Femel J., Breazeale A.P., Loo C.P., Thibault G., Kaempf A., Mori M., Tsujikawa T., Chang Y.H., Lund A.W. IFNγ activated dermal lymphatic vessels inhibit cytotoxic T cells in melanoma and inflamed skin. J. Exp. Med. 2018;215(12):3057– 3074. doi: 10.1084/jem.20180654

83. Sakatani T., Kita Y., Fujimoto M., Sano T., Hamada A., Nakamura K., Takada H., Goto T., Sawada A., Akamatsu S., Kobayashi T. IFN-gamma expression in the tumor microenvironment and CD8-positive tumor-infltrating lymphocytes as prognostic markers in urothelial cancer patients receiving pembrolizumab. Cancers. 2022;14:263. doi: 10.3390/cancers14020263

84. Hirashima T., Kanai T., Suzuki H., Yoshida H., Matsushita A., Kawasumi H., Samejima Y., Noda Y., Nasu S., Tanaka A., … Тanaka T. Тhe levels of interferon-gamma release as a biomarker for non-smallcell lung cancer patients receiving immune checkpoint inhibitors. Anticancer Res. 2019;39:6231–6240. doi:10.21873/anticanres.13832

85. Okamura H., Tsutsi H., Komatsu T., Yutsudo M., Hakura A., Tanimoto T., Torigoe K., Okura T., Nukada Y., Hattori K. Cloning of a new cytokine that induces IFN-γ production by T cells. Nature. 1995;378:88–91. doi: 10.1038/378088a0

86. Park H., Byun D., Kim T.S., Kim Y.I., Kang J.S., Hahm E.S., Kim S.H., Lee W.J., Song H.K., Yoon D.Y., … Cho D.H. Enhanced IL-18 expression in common skin tumors. Immunol. Lett. 2001;79:215–219. doi: 10.1016/s0165-2478(01)00278-4

87. Kim J., Kim C., Kim T.S., Bang S., Yang Y., Park H., Cho D. IL-18 enhances thrombospondin-1production in human gastric cancer via JNK pathway. Biochem. Biophys. Res. Commun. 2006;344:1284–1289. doi: 10.1016/j.bbrc.2006.04.016

88. Yoon D.Y., Cho Y.S., Park J.W., Kim S.H., Kim J.W. Up-regulation of reactive oxygen species (ROS) and resistance to Fas-mediated apoptosis in the C33A cervical cancer cell line transfected with IL-18 receptor. Clin. Chem. Lab. Med. 2004;42:499–506. doi:10.1515/CCLM.2004.085

89. Аутеншлюс А.И., Студеникина А.А., Вараксин Н.А. Продукция цитокинов биоптатом опухоли на разных патологических прогностических стадиях при раке молочной железы. Докл. РАН. Науки о жизни. 2021;497(1):180–184. doi: 10.31857/S2686738921020037

90. Conroy H., Mawhinney L., Donnelly S.C. Inflammation and cancer: macrophage migration inhibitory factor (MIF) – the potential missing link. QJM. 2010;103:831–836. doi: 10.1093/qjmed/hcq148

91. Calandra T., Roger T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat. Rev. Immunol. 2003;3:791–800. doi: 10.1038/nri1200

92. Tas F., Karabulut S., Serilmez M., Ciftci R., Duranyildiz D. Serum levels of macrophage migrationinhibitory factor (MIF) have diagnostic, predictive and prognostic roles in epithelial ovarian cancer patients. Tumour. Biol. 2014;35(4):3327–3331. doi: 10.1007/s13277-013-1438-z

93. Meyer-Siegler K.L., Iczkowski K.A., Vera P.L. Further evidence for increased macrophage migration inhibitory factor expression in prostate cancer. BMC Cancer. 2005;5:73. doi: 10.1186/1471-2407-5-73

94. Orditura M., Romano C., de Vita F., Galizia G., Lieto E., Infusino S., de Cataldis G., Catalano G. Behaviour of interleukin-2 serum levels in advanced non-small-cell lung cancer patients: relationship with response to therapy and survival. Cancer Immunol. Immunother. 2000;49:530–536. doi: 10.1007/s002620000150

95. Fiszer-Maliszewska L., den Otter W., Mordarski M. Effect of local interleukin-2 treatment on spontaneous tumours of different immunogenic strength. Cancer Immunol. Immunother. 1999;47(6):307–314. doi: 10.1007/s002620050535

96. Lowes M.A., Bishop G.A., Crotty K., Barnetson R.S., Halliday G.M. T helper 1 cytokine mRNA is increased in spontaneously regressing primarymelanomas. J. Invest. Dermatol. 1997;108:914–919. doi: 10.1111/1523-1747.ep12292705

97. Bakouny Z., Choueiri T.K. IL-8 and cancer prognosis on immunotherapy. Nature Medicine. 2020;26(5):650–651. doi: 10.1038/s41591-020-0873-9

98. Аверкин М.А., Златник Е.Ю., Шапошников А.В., Никипелова Е.А., Геворкян Ю.А. Изучение локального уровня цитокинов при раке толстой и прямой кишки. Сиб. онкол. ж. 2011;S1:7–8.

99. Ha H., Debnath B., Neamati N. Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases. Theranostics. 2017;7:1543–1588. doi: 10.7150/thno.15625

100. Alfaro C., Sanmamed M.F., RodríguezRuiz M.E., Teijeira Á., Oñate C., González Á., Ponz M., Schalper K.A., Pérez-Gracia J.L., Melero I. Interleukin-8 in cancer pathogenesis, treatment and follow-up. Cancer Treat. Rev. 2017;60:24–31. doi: 10.1016/j.ctrv.2017.08.004

101. Wilke C.M., Kryczek I., Wei S., Zhao E., Wu K., Wang G., Zou W. Th17 cells in cancer: help or hindrance? Carcinogenesis. 2011;32:643–649. doi:10.1093/carcin/bgr019

102. Jin C., Lagoudas G.K., Zhao C., Bullman S., Bhutkar A., Hu B., Ameh S., Sandel D., Liang X.S., Mazzilli S., … Jacks T. Commensal microbiota promote lung cancer development via γδ T cells. Cell. 2019;176:998–1013. doi: 10.1016/j.cell.2018.12.040

103. Punt S., Langenhoff J.M., Putter H., Fleuren G.J., Gorter A., Jordanova E.S. The correlations between IL-17 vs. Th17 cells and cancer patient survival: a systematic review. Oncoimmunology. 2015;4:e984547. doi: 10.4161/2162402X.2014.984547

104. Bedoui S.A., Barbirou M., Stayoussef M., Dallel M., Mokrani A., Makni L., Mezlini A., Bouhaouala B., Yacoubi-Loueslati B., Almawi W.Y. Association of interleukin-17A polymorphisms with the risk of colorectal cancer: A case-control study. Cytokine. 2018;110:18–23. doi: 10.1016/j.cyto.2018.04.017

105. Coffelt S.B., Kersten K., Doornebal C.W., Weiden J., Vrijland K., Hau C.-S., Verstegen N.J.M., Ciampricotti M., Hawinkels L.J.A.C., Jonkers J., de Visser K.E. IL-17-producing gdT cells and neutrophils conspire to promote breast cancer metastasis. Nature. 2015;522(7556):345–348. doi: 10.1038/nature14282

106. Chang S.H., Mirabolfathinejad S.G., Katta H., Cumpian A.M., Gong L., Caetano M.S., Moghaddam S.J., Dong C. T helper 17 cells play a critical pathogenic role in lung cancer. Proc. Natl. Acad. Sci. USA. 2014;111:5664–5669. doi: 10.1073/pnas.1319051111

107. Lim C., Savan R. The role of the IL-22/IL-22R1 axis in cancer. Cytokine Growth Factor Rev. 2014;25:257–271. doi: 10.1016/j.cytogfr.2014.04.005

108. Panigrahy D., Gartung A., Yang J., Yang H., Gilligan M.M., Sulciner M.L., Bhasin S.S., Bielenberg D.R., Chang J., Schmidt B.A., … Sukhatme V.P. Preoperative stimulation of resolution and inflammation blockade eradicates micrometastases. J. Clin. Invest. 2019;129(7):2964–2979. doi: 10.1172/JCI127282

109. Alizadeh A.M., Shiri S., Farsinejad S. Metastasis review: From bench to bedside. Tumor Biol. 2014;35:8483–8523. doi: 10.1007/s13277-014-2421-z

110. Mittal V. Epithelial mesenchymal transition in tumor metastasis. Annu. Rev. Pathol. 2018;13:395–412. doi: 10.1146/annurev-pathol-020117-043854

111. Xu J., Lamouille S., Derynck R. TGF-β-induced epithelial to mesenchymal transition. Cell Res. 2009;19:156–172. doi: 10.3390/ijms20112767

112. Yadav A., Kumar B., Datta J., Teknos T.N., Kumar P. IL-6 promotes head and neck tumor metastasis by inducing epithelial–mesenchymal transition via the JAK-STAT3-SNAIL signaling pathway. Mol. Cancer Res. 2011;9(12):1658–1667. doi: 10.1158/1541-7786.MCR-11-0271

113. Liu R.-Y., Zeng Y., Lei Z., Wang L., Yang H., Liu Z., Zhao J., Zhang H.T. JAK/STAT3 Signaling is required for TGF-β-induced epithelial-mesenchymal transition in lung cancer cells. Int. J. Oncol. 2014;44(5):1643–1651. doi: 10.3892/ijo.2014.2310

114. Pires B.R., Mencalha A.L., Ferreira G.M., de Souza W.F., Morgado-Dı́az J.A., Maia A.M., Corrêa S., Abdelhay E.S. NF-kappa B is involved in the regulation of EMT genes in breast cancer cells. PLoS One. 2017;12(1):e0169622. doi: 10.1371/journal.pone. 0169622.

115. Li R., Ong S.L., Tran L.M., Jing Z., Liu B., Park S.J., Huang Z.L., Walser T.C., Heinrich E.L., Lee G., … Dubinett S. Chronic IL-1β-induced inflammation regulates epithelial-to-mesenchymal transition memory phenotypes via epigenetic modifcations in non-small cell lung cancer. Sci. Rep. 2020;10(1):1–15. doi: 10.1038/s41598-020-61341-3

116. Lieu C., Heymach J., Overman M., Tran H., Kopetz S. Beyond VEGF: inhibition of the fbroblast growth factor pathway and antiangiogenesis. Clin. Cancer Res. 2011;17(19):6130–6139. doi: 10.1158/1078-0432.CCR-11-0659

117. Waugh D.J., Wilson C. The Interleukin-8 pathway in cancer. Clin. Cancer Res. 2008;14(21):6735–6741. doi: 10.1158/1078-0432.CCR-07-4843

118. Levy L., Hill C.S. Alterations in components of the TGF-b superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev. 2006;17(1-2):41–58. doi: 10.1016/j.cytogfr.2005.09.009

119. Gopinathan G., Milagre C., Pearce O.M., Reynolds L.E., Hodivala-Dilke K., Leinster D.A., Zhong H., Hollingsworth R.E., Thompson R., Whiteford J.R., Balkwill F. Interleukin-6 stimulates defective angiogenesis. Cancer Res. 2015;75(15):3098–30107. doi: 10.1158/0008-5472.CAN-15-1227

120. Li B., Vincent A., Cates J., Brantley-Sieders D.M., Polk D.B., Young P.P. Low levels of tumor necrosis factor-a increase tumor growth by inducing an endothelial phenotype of monocytes recruited to the tumor site. Cancer Res. 2009;69(1):338–348. doi: 10.1158/0008-5472.CAN-08-1565

121. Paduch R. The role of lymphangiogenesis and angiogenesis in tumor metastasis. Cell Oncol. (Dordr). 2016;39(5):397–410. doi: 10.1007/s13402-016-0281-9

122. Johnstone C.N., Chand A., Putoczki T.L., Ernst M. Emerging roles for IL-11 signaling in cancer development and progression: Focus on breast cancer. Cytokine Growth Factor Reviews. 2015;26(5):489–498. doi: 10.1016/j.cytogfr.2015.07.015

123. Suarez-Carmona M., Lesage J., Cataldo D., Gilles C. EMT and inflammation: Inseparable actors of cancer progression. Mol. Oncol. 2017;11:805–823. doi: 10.1002/1878-0261.12095

124. Ben-Baruch A. Organ selectivity in metastasis: regulation by chemokines and their receptors. Clin. Exp. Metastasis. 2008;25:345–356. doi: 10.1007/s10585-007-9097-3

125. Teng M.W., Andrews D.M., McLaughlin N., von Scheidt B., Ngiow S.F., Moller A., Hill G.R., Iwakura Y . , Oft M., Smyth M.J. IL-23 suppresses innate immune response in- dependently of IL-17A during carcinogenesis and metastasis. Proc. Natl. Acad. Sci. 2010;107:8328–8333. doi: 10.1073/pnas.1003251107

126. Glasner A., Levi A., Enk J., Isaacson B., Viukov S., Orlanski S., Scope A., Neuman T., Enk C.D., Hanna J.H., … Mandelboim O. NKp46 receptor-mediated interferon-g production by natural killer cells increases fbronectin 1 to alter tumor architecture and control metastasis. Immunity. 2018;48(1):107–119. doi:10.1016/j.immuni.2017.12.007

127. Song M., Ping Y., Zhang K., Yang L., Li F., Zhang C., Cheng S., Yue D., Maimela N.R., Qu J., … Zhang Y. Low-dose IFN-γ induces tumor cell stemness in tumor microenvironment of non-small cell lung cancer. Cancer Res. 2019;79(14):3737–3748. doi: 10.1158/0008-5472.CAN-19-0596

128. Kelly S.A., Gschmeissner S., East N., Balkwill F.R. Enhancement of metastatic potential by gamma-interferon. Cancer Res. 1991;51(15):4020–4027.

129. Chen H., Chou A.S., Liu Y., Hsieh C., Kang C., Pang S.T., Yeh C.T., Liu H.P., Liao S.K. Induction of metastatic cancer stem cells from the NK/LAK-resistant floating, but not adherent, subset of the UPLN1 carcinoma cell line by IFN-γ. Lab. Investig. 2011;91(10):1502–1513. doi: 10.1038/labinvest.2011.91

130. Lo U.G., Pong R.C., Yang D., Gandee L., Hernandez E., Dang A., Lin C.J., Santoyo J., Ma S.,Sonavane R., … Hsieh J.T. IFNγ-induced IFIT5 promotes epithelial-to-mesenchymal transition in prostate cancer via microRNA processing. Cancer Res. 2019;79(6):1098–1112. doi: 10.1158/0008-5472.CAN-18-2207

131. Kulig P., Burkhard S., Mikita-Geoffroy J., Croxford A.L., Hovelmeyer N., Gyulveszi G., Gorzelanny C., Waisman A., Borsig L., Becher B. IL17A-mediated endothelial breach promotes metastasis formation. Cancer Immunol. Res. 2016;4(1):26–32. doi: 10.1158/2326-6066.CIR-15-0154

132. Chen D., Li W., Liu S., Su Y., Han G., Xu C., Liu H., Zheng T., Zhou Y., Mao C. Interleukin-23 promotes the epithelial-mesenchymal transition of oesophageal carcinoma cells via the Wnt/b-catenin pathway. Sci. Rep. 2015;5:8604. doi: 10.1038/srep08604

133. Jung M.K., Song H.K., Kim K.E., Hur D.Y., Kim T., Bang S., Park H., Cho D.H. IL-18 enhances the migration ability of murine melanoma cells through the generation of ROI and the MAPK pathway. Immunol. Lett. 2006;107:125–130. doi: 10.1016/j.imlet.2006.08.004

134. Чердынцева Н.В., Митрофанова И.В., Булдаков М.А., Стахеева М.Н., Патышева М.Р., Завьялова М.В., Кжышковска Ю.Г. Макрофаги и опухолевая прогрессия: на пути к макрофагспецифичной терапии. Бюл. сиб. мед. 2017;16(4):61–74. doi: 10.20538/1682-0363-2017-4-61-74


Рецензия

Для цитирования:


Рыбкина В.Л., Адамова Г.В., Ослина Д.С. Роль цитокинов в патогенезе злокачественных новообразований. Сибирский научный медицинский журнал. 2023;43(2):15-28. https://doi.org/10.18699/SSMJ20230202

For citation:


Rybkina V.L., Adamova G.V., Oslina D.S. The role of cytokines in the pathogenesis of malignant neoplasms. Сибирский научный медицинский журнал. 2023;43(2):15-28. (In Russ.) https://doi.org/10.18699/SSMJ20230202

Просмотров: 373


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)