Нарушения метаболизма и риск заболевания COVID-19
https://doi.org/10.18699/SSMJ20220101
Аннотация
Целью настоящего обзора является анализ данных научной медицинской мировой литературы, посвященной изучению нарушений метаболизма и риска заболевания COVID-19. Известно, что метаболический синдром является независимым фактором риска тяжелого течения новой коронавирусной инфекции. В обзоре обобщены данные о механизмах метаболической дисфункции при COVID-19, проанализированы результаты исследований, в которых изучены вопросы ассоциаций между течением заболевания и различными метаболическими нарушениями, такими как гипергликемия и сахарный диабет, дислипидемия, ожирение, неалкогольная жировая болезнь печени, степенью их выраженности, рассмотрены потенциальные мишени терапии, предикторы развития тяжелого течения новой коронавирусной инфекции. Данные метаболические нарушения усиливают иммунный дисбаланс и делают пациентов более подверженными развитию инфекционных заболеваний, в частности к инфицированию SARS-CoV-2. Принимая во внимание вышесказанное, становится очевидным необходимость выявления и мониторинга пациентов с ранее существовавшими метаболическими заболеваниями, а также развития их во время и после COVID-19. Использованы сведения на основе баз данных PubMed, PubMed Central, Scopus, Google Scholar, Medscape, UpYoDate, eLIBRARY.RU.
Ключевые слова
Об авторах
А. А. КарасеваРоссия
Александра Александровна Карасева
630089, г. Новосибирск, ул. Бориса Богаткова, 175/1
А. Д. Худякова
Россия
Алена Дмитриевна Худякова, к.м.н.
630089, г. Новосибирск, ул. Бориса Богаткова, 175/1
Ю. И. Рагино
Россия
Юлия Игоревна Рагино, д.м.н., проф., чл.-корр. РАН
630089, г. Новосибирск, ул. Бориса Богаткова, 175/1
Список литературы
1. Weekly epidemiological update on COVID-19 23 November 2021. Available from: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19-23-november-2021
2. WHO Director-General’s remarks at the media briefing on 2019-nCoV on 11 February 2020. Available from: http://www.who.int/dg/speeches/detail/who-director-general-s-remarks-at-the-media-briefingon-2019-ncov-on-11-february-2020
3. Guan W.J., Liang W.H., Zhao Y., Liang H.R., Chen Z.S., Li Y.M., Liu X.Q., Chen R.C., Tang C.L., Wang T., … China Medical Treatment Expert Group for COVID-19. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur. Respir. J. 2020;5(5):2000547. doi: 10.1183/13993003.00547-2020
4. Gao F., Zheng K.I., Wang X.B., Yan H.D., Sun Q.F., Pan K.H., Wang T.Y., Chen Y.P., George J., Zheng M.H. Metabolic associated fatty liver disease increases coronavirus disease 2019 disease severity in nondiabetic patients. J. Gastroenterol. Hepatol. 2021;36(1):204–207. doi: 10.1111/jgh.15112
5. Petrilli C.M., Jones S.A., Yang J., Rajagopalan H., O’Donnell L., Chernyak Y., Tobin K.A., Cerfolio R.J., Francois F., Horwitz L.I. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 2020; 369:m1966. doi: 10.1136/bmj.m1966
6. Chai X., Hu L., Zhang Y., Han W., Lu Z., Ke A., Zhou J., Shi G., Fang N., Fan J., Cai J., Fan J., Lan F. Specific ACE2 expression in cholangiocytes may cause liver damage after 2019-nCoV infection. bioRxiv. 2020.02.03.931766. doi: 10.1101/2020.02.03.931766
7. Portincasa P., Krawczyk M., Smyk W., Lammert F., di Ciaula A. COVID-19 and non-alcoholic fatty liver disease: Two intersecting pandemics. Eur. J. Clin. Invest. 2020;50(10):e13338. doi: 10.1111/eci.13338
8. Moser J.S., Galindo-Fraga A., Ortiz-Hernández A.A., Gu W., Hunsberger S., Galán-Herrera J.F., Guerrero M.L., Ruiz-Palacios G.M., Beigel J.H.; La Red ILI 002 Study Group. Underweight, overweight, and obesity as independent risk factors for hospitalization in adults and children from influenza and other respiratory viruses. Influenza Other Respir. Viruses. 2019;13(1):3–9. doi: 10.1111/irv.12618
9. Jia X., Yin C., Lu S., Chen Y., Liu Q., Bai J., Lu Y. Two things about COVID-19 might need attention. Preprints. 2020:2020020315. doi: 10.20944/preprints202002.0315.v1
10. Richardson S., Hirsch J.S., Narasimhan M., Crawford J.M., McGinn T., Davidson K.W.; the Northwell COVID-19 Research Consortium, Barnaby D.P., Becker L.B., Chelico J.D., … Zanos T.P. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York city area. JAMA. 2020;323(20):2052–2059. doi: 10.1001/jama.2020.6775
11. ICNARC Report on COVID-19 in Critical Care. 2020. Available from: www.icnarc.og.
12. Lighter J., Phillips M., Hochman S., Sterling S., Johnson D., Francois F., Stachel A. Obesity in patients younger than 60 years is a risk factor for COVID-19 hospital admission. Clin. Infect. Dis. 2020;71(15):896–897. doi: 10.1093/cid/ciaa415
13. Tartof S.Y., Qian L., Hong V., Wei R., Nadjafi R.F., Fischer H., Li Z., Shaw S.F., Caparosa S.L., Nau C.L., … Murali S.B. Obesity and mortality among patients diagnosed with COVID-19: results from an Integrated Health Care Organization. Ann. Intern. Med. 2020;173(10):773–781. doi: 10.7326/M20-3742
14. Giacomelli A., Ridolfo A.L., Milazzo L., Oreni L., Bernacchia D., Siano M., Bonazzetti C., Covizzi A., Schiuma M., Passerini M., … Galli M. 30day mortality in patients hospitalized with COVID-19 during the first wave of the Italian epidemic: A prospective cohort study. Pharmacol. Res. 2020;158:104931. doi: 10.1016/j.phrs.2020.104931
15. Yu W., Rohli K.E., Yang S., Jia P. Impact of obesity on COVID-19 patients. Diabetes Complications. 2021;35(3):107817. doi: 10.1016/j.jdiacomp.2020.107817
16. Cabandugama P.K., Gardner M.J., Sowers J.R. The renin angiotensin aldosterone system in obesity and hypertension: roles in the cardiorenal metabolic syndrome. Med. Clin. North. Am. 2017;101(1):129–137. doi: 10.1016/j.mcna.2016.08.009
17. Шестакова М.В. Роль тканевой ренинангиотензин-альдостероновой системы в развитии метаболического синдрома, сахарного диабета и его сосудистых осложнений. Сах. диабет. 2010;13(3):14–19. doi: 10.14341/2072-0351-5481
18. Liu Y., Yang Y., Zhang C., Huang F., Wang F., Yuan J., Wang Z., Li J., Li J., Feng C., … Liu L. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci. China. Life Sci. 2020;63(3):364–374. doi: 10.1007/s11427020-1643-8
19. Eckel R.H., Grundy S.M., Zimmet P.Z. The metabolic syndrome. Lancet. 2005;365(16-22):1415– 1428. doi: 10.1016/S0140-6736(05)66378-7
20. Blot M., Masson D., Nguyen M., Bourredjem A.; LYMPHONIE Study Group, Binquet C., Piroth L. Are adipokines the missing link between obesity, immune response, and outcomes in severe COVID-19? Int. J. Obes. (Lond). 2021;45(9):2126–2131. doi: 10.1038/s41366-021-00868-5
21. Rebello C.J., Kirwan J.P., Greenway F.L. Obesity, the most common comorbidity in SARS-CoV-2: is leptin the link? Int. J. Obes. (Lond). 2020;44(9):1810– 1817. doi: 10.1038/s41366-020-0640-5
22. Popkin B.M., Du S., Green W.D., Beck M.A., Algaith T., Herbst C.H., Alsukait R.F., Alluhidan M., Alazemi N., Shekar M. Individuals with obesity and COVID-19: A global perspective on the epidemiology and biological relationships. Obes. Rev. 2020; 21(11):e13128. doi: 10.1111/obr.13128
23. Weisberg S.P., McCann D., Desai M., Rosenbaum M., Leibel R.L., Ferrante A.W.Jr. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 2003;112(12):1796–1808. doi: 10.1172/JCI19246
24. Francisco V., Pino J., Campos-Cabaleiro V., Ruiz-Fernández C., Mera A., Gonzalez-Gay M.A., Gómez R., Gualillo O. Obesity, fat mass and immune system: role for leptin. Front. Physiol. 2018;9:640. doi: 10.3389/fphys.2018.00640
25. Zhu L., She Z.G., Cheng X., Qin J.J., Zhang X.J., Cai J., Lei F., Wang H., Xie J., Wang W., … Li H. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab. 2020;31(6):1068–1077.e3. doi: 10.1016/j.cmet.2020.04.021
26. Bornstein S.R., Rubino F., Khunti K., Mingrone G., Hopkins D., Birkenfeld A.L., Boehm B., Amiel S., Holt R.I., Skyler J.S., … Ludwig B. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol. 2020;8(6):546–550. doi: 10.1016/S22138587(20)30152-2
27. Sheetz M.J., King G.L. Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. JAMA. 2002;288(20):2579–2588. doi: 10.1001/jama.288.20.2579
28. Yang Y., Cai Z., Zhang J. Hyperglycemia at admission is a strong predictor of mortality and severe/ critical complications in COVID-19 patients: a metaanalysis. Biosci. Rep. 2021;41(2): BSR20203584. doi: 10.1042/BSR20203584
29. Guo W., Li M., Dong Y., Zhou H., Zhang Z., Tian C., Qin R., Wang H., Shen Y., Du K., Zhao L., Fan H., Luo S., Hu D. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab. Res. Rev. 2020;36(7):e3319. doi: 10.1002/dmrr.3319
30. Hojyo S., Uchida M., Tanaka K., Hasebe R., Tanaka Y., Murakami M., Hirano T. How COVID-19 induces cytokine storm with high mortality. Inflamm. Regen. 2020;40:37. doi: 10.1186/s41232-020-00146-3
31. Herold T., Jurinovic V., Arnreich C., Lipworth B.J., Hellmuth J.C., von Bergwelt-Baildon M., Klein M., Weinberger T. Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID-19. J. Allergy Clin. Immunol. 2020;146(1):128–136.e4. doi: 10.1016/j.jaci.2020.05.008
32. Zhu Z., Mao Y., Chen G. Predictive value of HbA1c for in-hospital adverse prognosis in COVID-19: A systematic review and meta-analysis. Prim. Care Diabetes. 2021;15(6):910–917. doi: 10.1016/j.pcd.2021.07.013
33. Yang J.K., Lin S.S., Ji X.J., Guo L.M. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010;47(3):193– 199. doi: 10.1007/s00592-009-0109-4
34. Bindom S.M., Lazartigues E. The sweeter side of ACE2: physiological evidence for a role in diabetes. Mol. Cell. Endocrinol. 2009;302(2):193–202. doi: 10.1016/j.mce.2008.09.020
35. Shrestha D.B., Budhathoki P., Raut S., Adhikari S., Ghimire P., Thapaliya S., Rabaan A.A., Karki B.J. New-onset diabetes in COVID-19 and clinical outcomes: A systematic review and meta-analysis. World J. Virol. 2021;10(5):275–287. doi: 10.5501/wjv.v10.i5.275
36. Xu L., Liu J., Lu M., Yang D., Zheng X. Liver injury during highly pathogenic human coronavirus infections. Liver. Int. 2020;40(5):998–1004. doi: 10.1111/ liv.14435
37. Huang R., Zhu L., Wang J., Xue L., Liu L., Yan X., Huang S., Li Y., Yan X., Zhang B., … Wu C. Clinical features of COVID-19 patients with non-alcoholic fatty liver disease. Hepatol. Commun. 2020;4(12):1758–1768. doi: 10.1002/hep4.1592
38. Ji D., Qin E., Xu J., Zhang D., Cheng G., Wang Y., Lau G. Non-alcoholic fatty liver diseases in patients with COVID-19: A retrospective study. J. Hepatol. 2020;73(2):451–453. doi: 10.1016/j.jhep.2020.03.044
39. Cai Q., Huang D., Yu H., Zhu Z., Xia Z., Su Y., Li Z., Zhou G., Gou J., Qu J., … Xu L. COVID-19: Abnormal liver function tests. J. Hepatol. 2020;73(3):566– 574. doi: 10.1016/j.jhep.2020.04.006
40. Карасева А.А., Евдокимова Н.Е., Худякова А.Д., Стрюкова Е.В., Волкова М.В., Логвиненко И.И. Неалкогольная жировая болезнь печени и метаболические нарушения печени при новой коронавирусной инфекции. Сиб. науч. мед. ж. 2021;41(6):68–75. doi: 10.18699/SSMJ20210608
41. Zheng K.I., Gao F., Wang X.B., Sun Q.F., Pan K.H., Wang T.Y., Ma H.L., Chen Y.P., Liu W.Y., George J., Zheng M.H. Letter to the editor: Obesity as a risk factor for greater severity of COVID-19 in patients with metabolic associated fatty liver disease. Metabolism. 2020;108:154244. doi: 10.1016/j.metabol.2020.154244
42. Roca-Fernández A., Dennis A., Nicholls R., McGonigle J., Kelly M., Banerjee R., Banerjee A., Sanyal A.J. Hepatic steatosis, rather than underlying obesity, increases the risk of infection and hospitalization for COVID-19. Front. Med. (Lausanne). 2021;8:636637. doi: 10.3389/fmed.2021.636637
43. Tignanelli C.J., Bramante C.T., Dutta N., Tamariz L., Usher M.G., Ikramuddin S. Metabolic surgery may protect against admission for COVID-19 in persons with nonalcoholic fatty liver disease. Surg. Obes. Relat. Dis. 2021;17(10):1780–1786. doi: 10.1016/j.soard.2021.05.029
44. Zuin M., Rigatelli G., Bilato C., Cervellati C., Zuliani G., Roncon L. Prognostic role of metabolic syndrome in COVID-19 patients: a systematic review meta-analysis. Viruses. 2021;13(10):1938. doi: 10.3390/v13101938
45. Lorizate M., Kräusslich H.G. Role of lipids in virus replication. Cold Spring Harb. Perspect. Biol. 2011;3(10):a004820. doi: 10.1101/cshperspect. a004820
46. Cirstea M., Walley K.R., Russell J.A., Brunham L.R., Genga K.R., Boyd J.H. Decreased high-density lipoprotein cholesterol level is an early prognostic marker for organ dysfunction and death in patients with suspected sepsis. J. Crit. Care. 2017;38:289–294. doi: 10.1016/j.jcrc.2016.11.041
47. Hardt M., Schwudke D., Neuman B.W., Pleschka S., Ziebuhr J. Inhibition of cytosolic phospholipase A2α impairs an early step of coronavirus replication in cell culture. J. Virol. 2018;92(4):e01463–17. doi: 10.1128/JVI.01463-17
48. Barberis E., Timo S., Amede E., Vanella V.V., Puricelli C., Cappellano G., Raineri D., Cittone M.G., Rizzi E., Pedrinelli A.R., … Manfredi M. Large-scale plasma analysis revealed new mechanisms and molecules associated with the host response to SARSCoV-2. Int. J. Mol. Sci. 2020;21(22):8623. doi: 10.3390/ijms21228623
49. Bock J.O., Ortea I. Re-analysis of SARS-CoV2-infected host cell proteomics time-course data by impact pathway analysis and network analysis: a potential link with inflammatory response. Aging (Albany NY). 2020;12(12):11277–11286. doi: 10.18632/aging.103524
50. Abu-Farha M., Thanaraj T.A., Qaddoumi M.G., Hashem A., Abubaker J., Al-Mulla F. The role of lipid metabolism in COVID-19 virus infection and as a drug target. Int. J. Mol. Sci. 2020;21(10):3544. doi: 10.3390/ijms21103544
51. Mahat R.K., Rathore V., Singh N., Singh N., Singh S.K., Shah R.K., Garg C. Lipid profile as an indicator of COVID-19 severity: A systematic review and meta-analysis. Clin. Nutr. ESPEN. 2021;45:91–101. doi: 10.1016/j.clnesp.2021.07.023
52. Hu X., Chen D., Wu L., He G., Ye W. Declined serum high density lipoprotein cholesterol is associated with the severity of COVID-19 infection. Clin. Chim. Acta. 2020;510:105–110. doi: 10.1016/j.cca.2020.07.015
53. Zuin M., Rigatelli G., Bilato C., Cervellati C., Zuliani G., Roncon L. Dyslipidaemia and mortality in COVID-19 patients: a meta-analysis. QJM. 2021;114(6):390–397. doi: 10.1093/qjmed/hcab071
54. Kim J.A., Montagnani M., Chandrasekran S., Quon M.J. Role of lipotoxicity in endothelial dysfunction. Heart Fail. Clin. 2012;8(4):589–607. doi: 10.1016/j. hfc.2012.06.012
55. Froldi G., Dorigo P. Endothelial dysfunction in Coronavirus disease 2019 (COVID-19): Gender and age influences. Med. Hypotheses. 2020;144:110015. doi: 10.1016/j.mehy.2020.110015
56. Kaji H. High-density lipoproteins and the immune system. J. Lipids. 2013;2013:684903. doi: 10.1155/2013/684903
57. McKechnie J.L., Blish C.A. The innate immune system: fighting on the front lines or fanning the flames of COVID-19? Cell Host Microbe. 2020;27(6):863– 869. doi: 10.1016/j.chom.2020.05.009
58. Wang G., Zhang Q., Zhao X., Dong H., Wu C., Wu F., Yu B., Lv J., Zhang S., Wu G., Wu S., Wang X., Wu Y., Zhong Y. Low high-density lipoprotein level is correlated with the severity of COVID-19 patients: an observational study. Lipids Health Dis. 2020;19(1):204. doi: 10.1186/s12944-020-01382-9
59. Wei X., Zeng W., Su J., Wan H., Yu X., Cao X., Tan W., Wang H. Hypolipidemia is associated with the severity of COVID-19. J. Clin. Lipidol. 2020;14(3):297–304. doi: 10.1016/j.jacl.2020.04.008
60. Fan J., Wang H., Ye G., Cao X., Xu X., Tan W., Zhang Y. Letter to the editor: Low-density lipoprotein is a potential predictor of poor prognosis in patients with coronavirus disease 2019. Metabolism. 2020;107:154243. doi: 10.1016/j.metabol.2020.154243
61. Aparisi Á., Iglesias-Echeverría C., Ybarra-Falcón C., Cusácovich I., Uribarri A., García-Gómez M., Ladrón R., Fuertes R., Candela J., Tobar J., … Andaluz-Ojeda D. Low-density lipoprotein cholesterol levels are associated with poor clinical outcomes in COVID-19. Nutr. Metab. Cardiovasc. Dis. 2021;31(9):2619–2627. doi: 10.1016/j.numecd.2021.06.016
62. Dobiasova M., Frohlich J., Sedova M., Cheung M.C., Brown B.G. Cholesterol esterification and atherogenic index of plasma correlate with lipoprotein size and findings on coronary angiography. J. Lipid Res. 2011;52(3):566–571. doi: 10.1194/jlr.P011668
63. Onat A., Can G., Kaya H., Hergenç G. «Atherogenic index of plasma» (log10 triglyceride/high-density lipoprotein-cholesterol) predicts high blood pressure, diabetes, and vascular events. J. Clin. Lipidol. 2010;4(2):89–98. doi: 10.1016/j.jacl.2010.02.005
64. Yildiz G., Duman A., Aydin H., Yilmaz A., Hür E., Mağden K., Cetin G., Candan F. Evaluation of association between atherogenic index of plasma and intima-media thickness of the carotid artery for subclinic atherosclerosis in patients on maintenance hemodialysis. Hemodial. Int. 2013;7(3):397–405. doi: 10.1111/hdi.12041
65. Niroumand S., Khajedaluee M., Khadem-Rezaiyan M., Abrishami M., Juya M., Khodaee G., Dadgar-moghaddam M. Atherogenic index of plasma (AIP): A marker of cardiovascular disease. Med. J. Islam. Repub. Iran. 2015;29:240.
66. Turgay Yıldırım Ö., Kaya Ş. The atherogenic index of plasma as a predictor of mortality in patients with COVID-19. Heart Lung. 2021;50(2):329–333. doi: 10.1016/j.hrtlng.2021.01.016
Рецензия
Для цитирования:
Карасева А.А., Худякова А.Д., Рагино Ю.И. Нарушения метаболизма и риск заболевания COVID-19. Сибирский научный медицинский журнал. 2022;42(1):4-12. https://doi.org/10.18699/SSMJ20220101
For citation:
Karaseva A.A., Khudyakova A.D., Ragino Yu.I. Metabolic disorders and the risk of COVID-19. Сибирский научный медицинский журнал. 2022;42(1):4-12. (In Russ.) https://doi.org/10.18699/SSMJ20220101