История изучения нервного гребня (обзор)
https://doi.org/10.18699/SSMJ20230102
Аннотация
Нервный гребень давно привлекает внимание биологов, занимающихся вопросами эволюционного развития, а в последнее время – и клинических специалистов, поскольку исследования последних десятилетий значительно расширили границы познания об участии нервного гребня и его клеток в развитии патологии человека. Нервный гребень и клетки нервного гребня – это уникальная эволюционно-обоснованная эмбриональная структура. Его открытие полностью изменило видение процесса эмбриогенеза. Знания о развитии нервного гребня проливают свет на многие из самых «устоявшихся» вопросов биологии развития и эволюции. В статье отражены исторические этапы открытия и изучения нервного гребня и влияние этого открытия на укоренившиеся представления о специфичности зародышевых листков и теорию зародышевых слоев – рассуждения о нервном гребне как четвертом зародышевом листке. Целью настоящего обзора является описание истории открытия и изучения нервного гребня и его клеток на основе анализа литературных данных. При написании статьи выполнен анализ научных литературных источников по поисковым словосочетаниям «нервный гребень», «клетки нервного гребня», «морфология клеток нервного гребня», «зародышевые листки», «эмбриональное развитие» в базах данных PubMed, Scopus, Web of Science, eLibrary. Глубина аналитического поиска соответствует периоду открытия нервного гребня и первому упоминанию его как эмбриональной морфологической структуры в научной литературе. Представленная информация подтверждает высокий интерес ученых-исследователей и клинических специалистов в изучении нервного гребня и его клеток. Особое внимание в последние десятилетия уделяется участию клеток нервного гребня в формировании соматических патологий и патологий костно-мышечной системы. Источники литературы представлены 169 полнотекстовыми рукописями и монографиями в основном на английском языке. Заключение. Нервный гребень и его клетки являются уникальными эволюционными структурами. Закономерности образования, причины, обусловливающие процесс миграции, дифференцировки, взаимодействия клеток нервного гребня с другими структурами в эмбриогенезе, а также их потенциал, который реализуется в постнатальном периоде, продолжает быть предметом исследования и в настоящее время.
Об авторах
Н. Ю. ПахомоваРоссия
Наталья Юрьевна Пахомова, к.м.н.
630091, г. Новосибирск, ул. Фрунзе, 17
Е. Л. Строкова
Россия
Елена Леонидовна Строкова, к.б.н.
630091, г. Новосибирск, ул. Фрунзе, 17
А. А. Корыткин
Россия
Андрей Александрович Корыткин, к.м.н.
630091, г. Новосибирск, ул. Фрунзе, 17
В. В. Кожевников
Россия
Вадим Витальевич Кожевников, к.м.н.
630091, г. Новосибирск, ул. Фрунзе, 17
А. Ф. Гусев
Россия
Аркадий Федорович Гусев, к.м.н.
630091, г. Новосибирск, ул. Фрунзе, 17
А. М. Зайдман
Россия
Алла Михайловна Зайдман, д.м.н., проф.
630091, г. Новосибирск, ул. Фрунзе, 17
Список литературы
1. Remak R. Untersuchungen über die Entwickelung der Wirbelthiere. Berlin: Walter De Gruyter Incorporated, 1855. 194 p.
2. Etchevers H.C., Dupin E., le Douarin N.M. The diverse neural crest: from embryology to human pathology. Development. 2019;146(5):dev169821. doi: 10.1242/dev.169821
3. Hall B.K. The neural crest and neural crest cells in vertebrate development and evolution. Springer Science Business Media, LLC, 2010. 400 p. doi: 10.1007/978-0-387-09846-3
4. Bellairs R., Osmond M. Atlas of Chick Development 3rd Edition. San Diego: Elsevier Ltd., 2014. 660 p.
5. Gammill L.S., Bronner-Fraser M. Genomic analysis of neural crest induction. Development. 2002;129(24): 5731–5741. doi: 10.1242/dev.00175
6. Hall B.K. Germ layers and the germ-layer theory revisited: Primary and secondary germ layers, neural crest as a fourth germ layer, homology, demise of the germ-layer theory. Evolut. Biol. 1998;30:121–186. doi: 10.1007/978-1-4899-1751-5_5
7. His W. Untersuchungen über die erste Anlage des Wirbelthierleibes: die erste Entwickelung des Hühnchens im Ei. Leipzig: F.C.W. Vogel, 1868. doi: 10.5962/bhl.title.15288
8. His W. Unsere Körperform und das physiologische Problem ihrer Entstehung: Briefe an einen befreundeten Naturforscher. Leipzig: F.C.W. Vogel, 1874.
9. Marshall A.M. The morphology of the vertebrate olfactory organ. Quart. J. Microsc. Sci. 1879;19:300–340.
10. Marshall A.M. The development of the cranial nerves in the chick. Quart. J. Microsc. Sci. 1878;18:10–40.
11. Platt J.B. The development of the cartilaginous skull and of the branchial and hypoglossal musculature in Necturus. Morphol. Jb. 1897;25:377–464.
12. Platt J.B. Ontogenetic differentiation of the ectoderm in Necturus. II. On the development of the peripheral nervous system. Quart. J. Microsc. Sci. 1896;38:485–547.
13. Stone L.S. Experiments showing the role of migrating neural crest (mesectoderm) in the formation of head skeleton and loose connective tissue in Rana palustris. Wilhelm Roux Arch. Entw. Mech. Org. 1929;118:40–77. doi: 10.1007/BF02108871
14. Raven C.P. Zur entwicklung der Ganglienleiste. I. Die Kinematik der Ganglienleistenentwicklung bei den Urodelen. Wilhelm Roux Arch. Entw. Mech. Org. 1931;125(2-3):210–292. doi: 10.1007/BF00576356
15. Sellman S. Some experiments on the determination of the larval tooth in Amblystoma mexicanum. Odont. Tidskr. 1946;54:1–128.
16. de Beer G.R. The differentiation of neural crest cells into visceral cartilages and odontoblast in Amblystoma, and a re-examination of the germ-layer theory. Proc. R. Soc. Lond. B. Biol. Sci. 1947;2;134(876):377–398.
17. DuShane G.P. The embryology of vertebrate pigment cells. Part I. Amphibia. Quart. Rev. Biol. 1943;18:108–127.
18. DuShane G.P. The embryology of vertebrate pigment cells. Part II. Birds. Quart. Rev. Biol. 1944;19:98–117. doi: 10.1086/394689
19. Niu M.C. The axial organization of the neural crest, studied with particular reference to its pigmentary component. J. Exp. Zool. 1947;105(1):79–113. doi: 10.1002/jez.1401050105
20. Hörstadius S. The neural crest: its properties and derivatives in the light of experimental research. London: Oxford Univ. Press, 1950.
21. Hörstadius S., Sellman S. Experimental studies on the determination of the chondrocranium in Amblystoma mexicanum. Ark. Zool. 1941;1;33(13):1–8.
22. Hörstadius S., Sellman S. Experimentelle Untersuchungen über die Determination des knorpeligen Kopfskelettes bei Urodelen. Nova Acta R. Soc. Scient. Upsal. Ser. 1946;4;13(8).
23. Newth D.R. Fate of the neural crest in lampreys. Nature. 1950;18;165(4190):284. doi: 10.1038/165284a0
24. Newth D.R. On the neural crest of the lamprey embryo. Development. 1956;4(4):358–375. doi: 10.1242/dev.4.4.358
25. Weston J.A. A radioautographic analysis of the migration and localization of trunk neural crest cells in the chick. Dev. Biol. 1963;6:279–310. doi: 10.1016/0012-1606(63)90016-2
26. Weston J.A. The migration and differentiation of neural crest cells. Adv. Morphog. 1970;8:41–114. doi: 10.1016/b978-0-12-028608-9.50006-5
27. Johnston M.C. A radioautographic study of the migration and fate of cranial neural crest cells in the chick embryo. Anat. Rec. 1966;156(2):143–155. doi: 10.1002/ar.1091560204
28. Holtfreter J. Epithelial-mesenchymal interactions. Ed. R. Fleischmajer, ... R.E. Billingham. 18th Hahnemann symposium. Baltimore: Williams & Wilkins, 1968. 326 p.
29. Chibon P. Nuclear labelling by tritiated thymidine of neural crest derivatives in the amphibian Urodele Pleurodeles waltlii Michah. J. Embryol. Exp. Morphol. 1967;18(3):343–358.
30. le Douarin N.M. Cell recognition based on natural morphological nuclear markers. Med. Biol. 1974;52(5):281–319.
31. Weston J.A. A radioautographic analysis of the migration and localization of trunk neural crest cells in the chick. Dev. Biol. 1963;6:279–310. doi: 10.1016/0012-1606(63)90016-2
32. Weston J.A. The migration and differentiation of neural crest cells. Adv. Morphog. 1970;8:41–114. doi: 10.1016/b978-0-12-028608-9.50006-5
33. Bolande R.P. The neurocristopathies: A unifying concept of disease arising in neural crest maldevelopment. Human. Pathol. 1974;5:409–429. doi: 10.1016/S0046-8177(74)80021-3
34. le Li`evre C., le Douarin N.M. Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J. Embryol. Exp. Morphol. 1975;34:125–154.
35. Hassell J.R., Greenberg J.H., Johnston M.C. Inhibition of cranial neural crest cell development by vitamin A in cultured chick embryo. J. Embryol. Exp. Morph. 1977;39:267–271.
36. le Li`evre C. Participation of neural crest-derived cells in the genesis of the skull in birds. J. Embryol. Exp. Morphol. 1978;47:17–37.
37. Dupin E., Sextier-Sainte-Claire Deville F., Nataf V., le Douarin N.M. The ontogeny of the neural crest. C. R. Acad. Sci. III. 1993;316(9):1062–1081.
38. Baker C.V.H., Bronner-Fraser M., le Douarin N.M., Teillet M.A. Early- and late-migrating cranial neural crest cell populations have equivalent developmental potential in vivo. Development. 1997;124(16):3077–3087. doi: 10.1242/dev.124.16.3077
39. le Douarin N.M., Kalcheim C. The neural crest. 2nd Edition. Cambridge: Cambridge University Press, 2009. 445 p.
40. le Douarin N., Kalcheim C. The neural crest. Cambridge: Cambridge University Press, 1999. 445 p.
41. Sieber-Blum M. Mechanisms of neural crest diversification. Comments Dev. Neurobiol. 1990;4:225–249.
42. Perris R., Krotoski D., Lallier T., Domingo C., Sorrell J.M., Bronner-Fraser M . Spatial and temporal changes in the distribution of proteoglycans during avian neural crest development. Development. 1991;111(2):583–599. doi: 10.1242/dev.111.2.583
43. Erickson C.A. Morphogenesis of the avian trunk neural crest: use of morphological techniques in elucidating the process. Microsc. Res. Tech. 1993;1;26(4):329–351. doi: 10.1002/jemt.1070260406
44. Ito K., Morita T., Sieber-Blum M. In vitro clonal analysis of mouse neural crest development. Dev. Biol. 1993;157(2):517–525. doi: 10.1006/dbio.1993.1154
45. Stocker K.M., Brown A.M., Ciment G. Gene transfer of lacZ into avian neural tube and neural crest cells by retroviral infection of grafted embryonic tissues. J. Neurosci. Res. 1993;34(1):135–145. doi: 10.1002/jnr.490340114
46. Raible D.W., Eisen J.S. Regulative interactions in zebrafish neural crest. Development. 1996;122(2):501–507. doi: 10.1242/dev.122.2.501
47. Nakata K., Nagai T., Aruga J., Mikoshiba K. Xenopus Zic3, a primary regulator both in neural and neural crest development. Proc. Natl. Acad. Sci. USA. 1997;28;94(22):11980–11985. doi: 10.1073/pnas.94.22.11980
48. Baker C.V.H., Bronner-Fraser M. The origins of the neural crest. Part I: Embryonic induction. Mech. Dev. 1997;69(1-2):3–11. doi: 10.1016/s0925-4773(97)00132-9
49. Baker C.V.H., Bronner-Fraser M. The origins of the neural crest. Part II: An evolutionary perspective. Mech. Dev. 1997;69(1-2):13–29. doi: 10.1016/s0925-4773(97)00129-9
50. la Bonne C., Bronner-Fraser M. Neural crest induction in Xenopus: evidence for a two-signal model. Development. 1998;125(13):2403–2414. doi: 10.1242/dev.125.13.2403
51. Hall B.K. The neural crest in development and evolution. New York: Springer, 1999.
52. Lumsden A., Sprawson N., Graham A. Segmental origin and migration of neural crest cells in the hindbrain region of the chick embryo. Development. 1991;113(4):1281–1291. doi: 10.1242/dev.113.4.1281
53. Kuratani S., Kirby M.L. Migration and distribution of circumpharyngeal crest cells in the chick embryo: Formation of the circumpharyngeal ridge and E/ c8+ crest cells in the vertebrate head region. Anat. Rec. 1992;234(2):263–280. doi: 10.1002/ar.1092340213
54. Fukiishi Y., Morriss-Kay G.M. Migration of cranial neural crest cells to the pharyngeal arches and heart in rat embryos. Cell Tissue Res. 1992;268(1):1–8. doi: 10.1007/BF00338048
55. Collazo A., Bronner-Fraser M., Fraser S.E. Vital dye labelling of Xenopus laevis trunk neural crest reveals multipotency and novel pathways of migration. Development. 1993;118(2):363–376. doi: 10.1242/dev.118.2.363
56. Erickson C.A. From the crest to the periphery: control of pigment cell migration and lineage segre-gation. Pigment Cell Res. 1993;6(5):336–347. doi: 10.1111/j.1600-0749.1993.tb00611.x
57. Erickson C.A., Goins T.L. Avian neural crest cells can migrate in the dorsolateral path only if they are specified as melanocytes. Development. 1995;121(3):915–924. doi: 10.1242/dev.121.3.915
58. Graveson A.C., Hall B.K. The relationship between migration and chondrogenic potential of trunk neural crest cells in Ambystoma mexicanum. Roux’s Arch. Dev. Biol. 1995;204(7–8):477–483. doi: 10.1007/BF00360855
59. Peterson P.E., Blankenship T.H., Wilson D.B., Hendrickx A.G. Analysis of hindbrain neural crest migration in the long-tailed monkey (Macaca fascicularis). Anat. Embryol. (Berl.). 1996;194(3):235–246. doi: 10.1007/BF00187134
60. Blankenship T.N., Peterson P.E., Hendrickx A.G. Emigration of neural crest cells from macaque optic vesicles is correlated with discontinuities in its basementmembrane. J. Anat. 1996;188(2):473–483.
61. Krull C.E., Lansford R., Gale N.W., Collazo A., Marcelle C., Yancopoulos G.D., Fraser S.E., Bronner-Fraser M. Interactions of Eph-related receptors and ligands confer rostrocaudal pattern to trunk neural crest migration. Curr. Biol. 1997;1;7(8):571–580. doi: 10.1016/s0960-9822(06)00256-9
62. Serbedzija G.N., McMahon A.P. Analysis of neural crest cell migration in Splotch mice using a neural crest-specific LacZ reporter. Dev. Biol. 1997;15;185(2):139–147. doi: 10.1006/dbio.1997.8551
63. Conway S.J., Henderson D.J., Copp A.J. Pax3 is required for cardiac neural crest migration in the mouse: Evidence from the Splotch (Sp2H) mutant. Development. 1997;124(2):505–514. doi: 10.1242/dev.124.2.505
64. Poelmann R.E., Mikawa T., Gittenberger-de Groot A.C. Neural crest cells in outflow tract septation of the embryonic chicken heart: Differentiation and apoptosis. Dev. Dyn. 1998;212(3):373–384. doi: 10.1002/(SICI)1097-0177(199807)212:3<373:AIDAJA5>3.0.CO;2-E
65. Vaglia J.L., Hall B.K. Regulation of neural crest cell populations in vertebrates: Occurrence, distribution and underlying mechanisms. Int. J. Dev. Biol. 1999;43(2):95–110.
66. Poelmann R.E., Gittenberger-de Groot A.C., Mentink M.M.T., Delpech B., Girard N., Christ B. The extracellular matrix during neural crest formation and migration in rat embryos. Anat. Embryol. (Berl.). 1990;182(1):29–39. doi: 10.1007/BF00187525
67. Bronner-Fraser M., Wolf J.J., Murray B.A. Effects of antibodies against N-cadherin and N-CAM on the cranial neural crest and neural tube. Dev. Biol. 1992;153(2):291–301. doi: 10.1016/0012-1606(92)90114-v
68. Peters-Van der Sanden M.J., Kirby M.L., Gittenberger-de Groot A., Tibboel D., Mulder M.P., Meijers C. Ablation of various regions within the avian vagal neural crest has differential effects on ganglion formation in the fore-, mid- and hindgut. Dev. Dyn. 1993;196(3):183–194. doi: 10.1002/aja.1001960305
69. Spence S.G., Poole T.J. Developing blood vessels and associated extracellular matrix as substrates for neural crest migration in Japanese quail, Coturnix coturnix japonica. Int. J. Dev. Biol. 1994;38(1):85–98.
70. Lee Y.M., Osumi-Yamashita N., Ninomiya Y., Moon C.K., Eriksson U., Eto K . Retinoic acid stage-dependently alters the migration pattern and identity of hindbrain neural crest cells. Development. 1995;121(3):825–837. doi: 10.1242/dev.121.3.825
71. Ito K., Morita T. Role of retinoic acid in mouse neural crest cell development in vitro. Dev. Dyn. 1995;204(2):211–218. doi: 10.1002/aja.1002040212
72. Moiseiwitsch J.R., Lauder J.M. Serotonin regulates mouse cranial neural crest migration. Proc. Natl. Acad. Sci. USA. 1995;1;92(16):7182–7186. doi: 10.1073/pnas.92.16.7182
73. Newgreen D.F., Minichiello J. Control of epitheliomesenchymal transformation. I. Events in the onset of neural crest cell migration are separable and inducible by protein kinase inhibitors. Dev. Biol. 1995;170(1):91–101. doi: 10.1006/dbio.1995.1198
74. Rowe A., Brickell P.M. Expression of the chicken retinoic X receptor-gamma gene in migrating cranial neural crest cells. Anat. Embryol. (Berl.). 1995;192(1):1–8. doi: 10.1007/BF00186986
75. Olsson L., Svensson K., Perris R. Effects of extracellular matrix molecules on subepidermal neural crest cell migration in wild type and white mutant (dd) axolotl embryos. Pigment Cell Res. 1996; 9(1):18–27. doi: 10.1111/j.1600-0749.1996.tb00082.x
76. Olsson L., Stigson M., Perris R., Sorrell J.M., Löfberg J. Distribution of keratin sulfate and chondroitin sulfate in wild type and white mutant axolotl embryos during neural crest cell-migration. Pigment Cell Res. 1996;9(1):5–17. doi: 10.1111/j.1600-0749.1996.tb00081.x
77. Ikeya M., Lee S.M.K., Johnson J.E., McMahon A.P., Takada S. Wnt signalling required for expansion of neural crest and CNS progenitors. Nature. 1997;30;389(6654):966–970. doi: 10.1038/40146
78. Mayor R., Guerrero N., Martínez C. Role of FGF and Noggin in neural crest induction. Dev. Biol. 1997;1;189(1):1–12. doi: 10.1006/dbio.1997.8634
79. Smith A., Robinson V., Patel K., Wilkinson D.G. The EphA4 and EphB1 receptor tyrosine kinases and ephrin-B2 ligand regulate targeted migration of branchial neural crest cells. Curr. Biol. 1997; 1;7(8):561–570. doi: 10.1016/s0960-9822(06)00255-7
80. Wehrle-Haller B., Weston J.A. Receptor tyrosine kinase-dependent neural crest migration in response to differentially localized growth factors. Bioessays. 1997;19(4):337–345. doi: 10.1002/bies.950190411
81. Moro Balbás J.A., Gato A., Alonso M., Barbosa E. Local increase level of chondroitin sulfate induces changes in the rhombencephalic neural crest migration. Int. J. Dev. Biol. 1998;42(2):207–216.
82. Nakagawa S., Takeichi M. Neural crest emigration from the neural tube depends on regulated cadherin expression. Development. 1998;125(15):2963–2971. doi: 10.1242/dev.125.15.2963
83. Baker J.C., Beddington R.S.P., Harland R.M. WNT signaling in Xenopus embryos inhibits bmp4 expression and activates neural development. Genes Dev. 1999;1;13(23):3149–3159. doi: 10.1101/gad.13.23.3149
84. Tucker R.P., Hagios C., Chiquet-Ehrismann R., Lawler J., Hall R.J., Erickson C.A. Thrombospondin- 1 and neural crest cell migration. Dev. Dyn. 1999;214(4):312–322. doi: 10.1002/(SICI)1097-0177(199904)214:4<312::AID-AJA4>3.0.CO;2-A
85. Osumi-Yamashita N., Eto K. Mammalian cranial neural crest cells and facial development. Develop. Growth. Differ. 1990;32(5):451–459. doi: 10.1111/j.1440-169X.1990.00451.x
86. Seufert D.W., Hall B.K. Tissue interactions involving cranial neural crest in cartilage formation in Xenopus laevis (Daudin). Cell. Differ. Dev. 1990;1;32(2):153–165. doi: 10.1016/0922-3371(90)90109-a
87. Hall B.K., Ekanayake S. Effects of growth factors on the differentiation of neural crest cells and neural crest cell-derivatives. Int. J. Dev. Biol. 1991;35(4):367–387.
88. Maxwell G.D., Forbes M.E. Spectrum of in vitro differentiation of quail trunk neural crest cells isolated by cell sorting using the HNK-1 antibody and analysis of the adrenergic development of HNK-1+ sorted subpopulations. J. Neurobiol. 1991;22(3):276–286. doi: 10.1002/neu.480220307
89. Stocker K.M., Sherman L., Rees S., Ciment G. Basic FGF and TGF-beta1 influence commitment to melanogenesis in neural crest-derived cells of avian embryos. Development. 1991;111(2):635–645. doi: 10.1242/dev.111.2.635
90. Gvirtzman G., Goldstein R.S, Kalcheim C. A positive correlation between permissiveness of mesoderm to neural crest migration and early DRG growth. J. Neurobiol. 1992;23(3):205–216. doi: 10.1002/neu.480230302
91. le Douarin N.M., Dupin E., Baroffio A., Dulac C. New insights into the development of neural crest derivatives. Int. Rev. Cytol. 1992;138:269–314. doi: 10.1016/s0074-7696(08)61591-0
92. le Douarin N.M., Ziller C., Couly G.F. Patterning of neural crest derivatives in the avian embryo: in vivo and in vitro studies. Dev. Biol. 1993;159(1):24–49. doi: 10.1006/dbio.1993.1219
93. Sherman L., Stocker K.M., Morrison R., Ciment G. Basic fibroblast growth factor (bFGF) acts intracellularly to cause the transdifferentiation of avian neural crest-derived Schwann cell precursors into melanocytes. Development. 1993;118(4):1313–1326. doi: 10.1242/dev.118.4.1313
94. Asamoto K., Nojyo Y., Aoyama H. Restriction of the fate of early migrating trunk neural crest in gangliogenesis of avian embryos. Int. J. Dev. Biol. 1995;39(6):975–984.
95. Goldstein R.S., Avivi C., Geffe R. Initial axial level-dependent differences in size of avian dorsal root ganglia are imposed by the sclerotome. Dev. Biol. 1995;168(1):214–222. doi: 10.1006/dbio.1995.1073
96. Nieto M.A., Sechrist J., Wilkinson D.G., Bronner-Fraser M. Relationship between spatially restricted Krox-20 gene expression in branchial neural crest and segmentation in the chick embryo hindbrain. EMBO J. 1995;18;14(8):1697–1710. doi: 10.1002/j.1460-2075.1995.tb07159.x
97. Robertson K., Mason I. Expression of ret in the chicken embryo suggests roles in regionalization of the vagal neural tube and somites and in development of multiple neural crest and placodal lineages. Mech. Dev. 1995;53(3):329–344. doi: 10.1016/0925-4773(95)00449-1
98. Lahav R., Ziller C., Dupin E., le Douarin N.M. Endothelin 3 promotes neural crest cell proliferation and mediates a vast increase in melanocyte number in culture. Proc. Natl. Acad. Sci. USA. 1996;30;93(9):3892–3897. doi: 10.1073/pnas.93.9.3892
99. Anderson D.J. Cellular and molecular biology of neural crest cell lineage determination. Trends Genet. 1997;13(7):276–280. doi: 10.1016/s0168-9525(97)01187-6
100. Graveson A.C., Smith M.M., Hall B.K. Neural crest potential for tooth development in a urodele amphibian: developmental and evolutionary significance. Dev. Biol. 1997;1;188(1):34–42. doi: 10.1006/dbio.1997.8563
101. Kerr R.S.E., Newgreen D.F. Isolation and characterization of chondroitin sulfate proteoglycans from embryonic quail that influence neural crest cell behavior. Dev. Biol. 1997;192(1):108–124. doi: 10.1006/dbio.1997.8731
102. Soriano P. The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites. Development. 1997;124(14):2691–2700. doi: 10.1242/dev.124.14.2691
103. Wehrle-Haller B., Weston J.A. Receptor tyrosine kinase-dependent neural crest migration in response to differentially localized growth factors. Bioessays. 1997;19(4):337–345. doi: 10.1002/bies.950190411
104. Thomas T., Kurihara H., Yamagishi H., Kurihara Y., Yazaki Y., Olson E.N., Srivastava D. A signaling cascade involving endothelin-1, dHAND and msx1 regulates development of neural-crest-derived branchialarch mesenchyme. Development. 1998;125(16):3005–3014. doi: 10.1242/dev.125.16.3005
105. Takahashi Y., le Douarin N.M. cDNA cloning of a quail homeobox gene and its expression in neural crest-derived mesenchyme and lateral plate mesoderm. Proc. Natl. Acad. Sci. USA. 1990; 87(19):7482–7486. doi: 10.1073/pnas.87.19.7482
106. Gvirtzmann G., Goldstein R.S., Kalcheim C. A positive correlation between permissivenessof mesoderm to neural crestmigration and early DRG growth. J. Neurobiol. 1992;23(3):205–216. doi: 10.1002/neu.480230302
107. Rothman T.P., Goldowitz D., Gershon M.D. Inhibition of migration of neural crest-derived cells by the abnormal mesenchyme of the presumptive aganglionic bowel of ls/ls mice: analysis with aggregation and interspecies chimeras. Dev. Biol. 1993;159(2):559–573. doi: 10.1006/dbio.1993.1264
108. Osumi-Yamashita N., Ninomiya Y., Doi H., Eto K. The contribution of both forebrain and midbrain crest cells to the mesenchyme in the frontonasal mass of mouse embryos. Dev. Biol. 1994;164(2):409–419. doi: 10.1006/dbio.1994.1211
109. Dickinson M.E., Sellek M.A.J., McMahon A.P., Bronner-Fraser M. Dorsalization of the neural tube by the non-neural ectoderm. Development. 1995;121(7):2099–2106. doi: 10.1242/dev.121.7.2099
110. Dunlop L.L., Hall B.K. Relationships between cellular condensation, preosteoblast formation and epithelial–mesenchymal interactions in initiation of osteogenesis. Int. J. Dev. Biol. 1995;39(2):357–371.
111. Liem K.F.Jr., Tremml G., Roelink H., Jessell T.M. Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell. 1995; 2;82(6):969–979. doi: 10.1016/0092-8674(95)90276-7
112. Wilson P.A., Hemmati-Brivanlou A. Induction of epidermis and inhibition of neural fate by BMP-4. Nature. 1995;27;376(6538):331–333. doi: 10.1038/376331a0
113. Holland N.D., Panganiban G., Henyey E.L., Holland L.Z. Sequence and developmental expression of AmphiDll, an amphioxus Distal-less gene transcribed in the ectoderm, epidermis and nervous system: insights into evolution of craniate forebrain and neural crest. Development. 1996;122(9):2911–2920. doi: 10.1242/dev.122.9.2911
114. Imai H., Osumi-Yamashita N., Ninomiya Y., Eto K. Contribution of early-migrating midbrain crest cells to the dental mesenchyme of mandibular molar teeth in rat embryos. Dev. Biol. 1996;15;176(2):151–165. doi: 10.1006/dbio.1996.9985
115. Barlow L.A., Northcutt R.G. Taste buds develop autonomously from endoderm without induction by cephalic neural crest or paraxial mesoderm. Development. 1997;124(5):949–957. doi: 10.1242/dev.124.5.949
116. Marchant L., Linke C., Ruiz P., Guerrero N., Mayor R. The inductive properties of mesoderm suggest that the neural crest cells are specified by a BMP gradient. Dev. Biol. 1998;15;198(2):319–329.
117. Morrison-Graham K., Schatteman G.C., Bork T., Bowen-Pope D.F., Weston J.A. A PDGF receptor mutation in the mouse (Patch) perturbs the development of a non-neural subset of neural crest-derived cells. Development. 1992;115(1):133–142. doi: 10.1242/dev.115.1.133
118. Couly G.F., Coltey P.M., le Douarin N.M. The triple origin of the skull in higher vertebrates: a study in quail-chick chimeras. Development. 1993;117(2):409–429. doi: 10.1242/dev.117.2.409
119. Gendron-Maguire M., Mallo M., Zhang M., Gridley T. Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell. 1993;31;75(7):1317–1331. doi: 10.1016/0092-8674(93)90619-2
120. Brannan C.I., Perkins A.S., Vogel K.S., Ratner N., Nordlund M.L., Reid S.W., Buchberg A.M., Jenkins N.A., Parada L.F., Copeland N.G. Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev. 1994;1;8(9):1019–1029. doi: 10.1101/gad.8.9.1019
121. Takahashi Y., Bontoux M., le Douarin N.M. Epithelio-mesenchymal interactions are critical for Quox 7 expression and membrane bone differentiation in the neural crest derived mandibular mesenchyme. EMBO J. 1991;10(9):2387–2393. doi: 10.1002/j.1460-2075.1991.tb07777.x
122. Hart R.C., McCue P.A., Ragland W.L., Winn K.J., Unger E.R. Avian model for 13-cis-retinoic acid embryopathy: demonstration of neural crest related defects. Teratology. 1990;41(4):463–472. doi: 10.1002/tera.1420410411
123. Thisse C., Thisse B., Postlethwait J.H. Expression of snail2, a second member of the zebrafish Snail family, in cephalic mesendoderm and presumptive neural crest of wild-type and spadetail mutant embryos. Dev. Biol. 1995;172(1):86–99. doi: 10.1006/dbio.1995.0007
124. Tremblay P., Kessel M., Gruss P. A transgenic neuroanatomical marker identifies cranial neural crest deficiencies associated with the Pax3 mutant Splotch. Dev. Biol. 1995;171(2):317–329. doi: 10.1006/dbio.1995.1284
125. Henion P.D., Raible D.W., Beattie C.E., Stoesser K.L., Weston J.A., Eisen J.S. Screen for mutations affecting development of zebrafish neural crest. Dev. Genet. 1996;18(1):11–17. doi: 10.1002/(SICI)1520-6408(1996)18:1<11::AID-DVG2>3.0.CO;2-4
126. Kelsh R.N., Brand M., Jiang Y.-J., Heisenberg C.-P., Lin S., Haffter P., Odenthal J., Mullins M.C., van Eeden F.J., Furutani-Seiki M., … Nüsslein-Volhard C. Zebrafish pigmentation mutations and theprocesses of neural crest development. Development. 1996;123:369–389. doi: 10.1242/dev.123.1.369
127. Zhang J., Hagopian-Donaldson S., Serbedzija G., Elsemore J., Plehn-Dujowich D., McMahon A.P., Flavell R.A., Williams T. Neural tube, skeletal and body wall defects in mice lacking transcription factor AP-2. Nature. 1996;16;381(6579):238–241. doi: 10.1038/381238a0
128. Ewart J.L., Cohen M.F., Meyer R.A., Huang G.Y., Wessels A., Gourdie R.G., Chin A.J., Park S.M., Lazatin B.O., Villabon S., Lo C.W. Heart and neural tube defects in transgenic mice overexpressing the Cx43 gap junction gene. Development. 1997;124(7):1281–1292. doi: 10.1242/dev.124.7.1281
129. Goh K.L., Yang J.T., Hynes R.O. Mesodermal defects and cranial neural crest apoptosis in alpha5 integrin-null embryos. Development. 1997;124(21):4309–4319. doi: 10.1242/dev.124.21.4309
130. Clouthier D.E., Hosoda K., Richardson J.A., Williams S.C., Yanagisawa H., Kuwaki T., Kumada M., Hammer R.E., Yanagisawa M. Cranial and cardiac neural crest defects in endothelin-A receptor-deficient mice. Development. 1998;125(5):813–824. doi: 10.1242/dev.125.5.813
131. Corcoran J. What are the molecular mechanisms of neural tube defects? Bioessays. 1998;20(1):6–8. doi: 10.1002/(SICI)1521-1878(199801)20:1<6::AIDBIES3>3.0.CO;2-T
132. Takahashi K., Nuckolls G.H., Tanaka O., Semba I., Takahashi I., Dashner R., Shum L., Slavkin H.C. Adenovirus-mediated ectopic expression of Msx2 in even-numbered rhombomeres induces apoptotic elimination of cranial neural crest cells in ovo. Development. 1998;125(9):1627–1635. doi: 10.1242/dev.125.9.1627
133. Anderson J., Ramsay A., Gould S., Pritchard-Jones K. PAX3-FKHR induces morphological change and enhances cellular proliferation and invasion in rhabdomyosarcoma. Am. J. Pathol. 2001;159(3):1089–1096. doi: 10.1016/S0002-9440(10)61784-1
134. Barber T.D., Barber M.C., Tomescu O., Barr F.G., Ruben S., Friedman T.B. Identification of target genes regulated by PAX3 and PAX3-FKHR in embryogenesis and alveolar rhabdomyosarcoma. Genomics. 2002;79(3):278–284. doi: 10.1006/geno.2002.6703
135. Blake J.A., Ziman M.R. Pax3 transcripts in melanoblast development. Dev. Growth. Differ. 2005;47(9):627–635. doi: 10.1111/j.1440-169X.2005.00835.x
136. Boudjadi S., Chatterjee B., Sun W., Vemu P., Barr F.G. The expression and function of PAX3 in development and disease. Gene. 2018;5;666:145–157. doi: 10.1016/j.gene.2018.04.087
137. Powell D.R., Blasky A.J., Britt S.G., Artinger K.B. Riding the crest of the wave: parallels between the neural crest and cancer in epithelial-to-mesenchymal transition and migration. Wiley Interdiscip Rev. Syst. Biol. Med. 2013;5(4):511–522. doi: 10.1002/wsbm.1224
138. Maguire L.H., Thomas A.R. Goldstein A.M. Tumors of the neural crest: Common themes in development and cancer. Dev. Dyn. 2015;244(3):311–322. doi: 10.1002/dvdy.24226
139. Vega-Lopez G.A., Cerrizuela S., Tribulo C., Aybar M.J. Neurocristopathies: New insights 150 years after the neural crest discovery. Dev. Biol. 2018;1;444;1:110–143. doi: 10.1016/j.ydbio.2018.05.013
140. Etchevers H.C., Dupin E., Le Douarin N.M. The diverse neural crest: from embryology to human pathology. Development. 2019;11;146(5):dev169821. doi: 10.1242/dev.169821
141. Ritter K.E., Martin D.M. Neural сrest сontributions to the ear: implications for congenital hearing disorders. Hear Res. 2019;376:22–32. doi: 10.1016/j.heares.2018.11.005
142. Medina-Cuadra L., Monsoro-Burq A.H. Xenopus, an emerging model for studying pathologies of the neural crest. Curr. Top. Dev. Biol. 2021;145:313–348. doi: 10.1016/bs.ctdb.2021.03.002
143. Kléber M., Lee H.-Y., Wurdak H., Buchstaller J., Riccomagno M.M., Ittner L.M., Suter U., Epstein D.J., Sommer L. Neural crest stem cell maintenance by combinatorial Wnt and BMP signaling. J. Cell Biol. 2005;25;169(2):309–320. doi: 10.1083/jcb.200411095
144. Rinon A., Molchadsky A., Nathan E., Yovel G., Rotter V., Sarig R., Tzahor E. p53 coordinates cranial neural crest cell growth and epithelial-mesenchymal transition/delamination processes. Development. 2011;38(9):1827–1838. doi: 10.1242/dev.053645
145. Giovannone D., Ortega B., Reyes M., El-Ghali N., Rabadi M., Sao S., de Bellard M.E. Chicken trunk neural crest migration visualized with HNK1. Acta Histochem. 2015;117(3):255–266. doi: 10.1016/j.acthis.2015.03.002
146. Arrigo A.B., Lin J.-H.I. Endocytic protein defects in the neural crest cell lineage and its pathway are associated with congenital heart defects. Int. J. Mol. Sci. 2021;16;22(16):8816. doi: 10.3390/ijms22168816
147. Manzari-Tavakoli A., Babajani A., Farjoo M.H., Hajinasrollah M., Bahrami S., Niknejad H. The cross-talks among bone morphogenetic protein (BMP) signaling and other prominent pathways involved in neural differentiation. Front. Mol. Neurosci. 2022;15;15:827275. doi: 10.3389/fnmol.2022.827275
148. Newton P.T., Li L., Zhou B., Schweingruber C., Hovorakova M., Xie M., Sun X., Sandhow L., Artemov A.V., Ivashkin E., … Chagin A.S. A radical switch in clonality reveals a stem cell niche in the epiphyseal growth plate. Nature. 2019;567(7747):234–238. doi: 10.1038/s41586-019-0989-6
149. Ivashkin E., Adameyko I. Progenitors of the protochordate ocellus as an evolutionary originof the neural crest. Evodevo. 2013;10;4(1):12. doi: 10.1186/2041-9139-4-12
150. Kastriti M.E., Adameyko I. Specification, plasticity and evolutionary origin of peripheral glial cells. Curr. Opin. Neurobiol. 2017;47:196–202. doi: 10.1016/j.conb.2017.11.004
151. Пшенникова Е.С., Воронина А.С. Нервный гребень – своеобразная популяция эмбриональных клеток. Молекул. биол. 2019;53(2):256–267. doi: 10.1134/S0026898419020137
152. Pshennikova E.S., Voronina A.S. Nerve ridge – an unusual population of embryonic cells. Molekulyarnaya biologiya = Molecular Biology. 2019;53(2):256–267. [In Russian]. doi: 10.1134/S0026898419020137
153. Обухов Д.К., Андреева Н.Г. Эволюционная морфология нервной системы позвоночных. М.: Юрайт. 2017. 384 с.
154. Зайдман А.М., Строкова Е.Л., Киселева Е.В., Агеева Т. А., Сульдина Л.А., Струнов А.А., Шевченко А.И. Эктопическая локализация клеток нервного гребня – этиологический фактор сколиотической болезни. Хирургия позвоночника. 2015;12(4):88–97. doi: 10.14531/ss2015.4.88-97
155. Zaydman A.M., Strokova E.L., Pahomova N.Y., Gusev A.F., Mikhaylovskiy M.V., Shevchenko A.I., Zaidman M.N., Shilo A.R., Subbotin V.M. Etiopathogenesis of adolescent idiopathic scoliosis: Review of the literature and new epigenetic hypothesis on altered neural crest cells migration in early embryogenesis as the key event. Med. Hypotheses. 2021;151:110585. doi: 10.1016/j.mehy.2021.110585
156. Pander C. Dissertatio inauguralis sistens historiam metamorphoseos, quam ovum incubatum prioribus quinque diebus subit. Wirceburgi: Typis Francisci Ernesti Nitribitt, Universitatis typographi, 1817. 69 p.
157. Huxley T.H. On the anatomy and the affinities of the family of the medusae. London: Royal Society, 1849. 835 p.
158. Hertwig O., Hertwig R. Die Coelomtheorie: Versuch einer Erklärung des mittleren Keimblattes. Jena: Gustav Fischer, 1881. 340 p.
159. Lankester E.R. 1877. Memoirs: notes on the embrylogy and classification of the Animal Kingdom: comprising a revision of speculations relative to the origin and significance of the germ-layers. Quar. J. Microsc. Sci. New Series;17:399–454.
160. Sasai Y., de Robertis E.M. Ectodermal patterning in vertebrate embryos. Dev. Biol. 1997;182(1):5–20. doi: 10.1006/dbio.1996.8445
161. Martindale M.Q., Pang K., Finnerty J.R. Investigating the origins of triploblasty: ‘mesodermal’ gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa). Development. 2004;131(10):2463–2474. doi: 10.1242/dev.01119
162. Putnam N.H., Srivastava M., Hellsten U., Dirks B., Chapman J., Salamov A., Terry A., Shapiro H., Lindquist E., Kapitonov V.V., … Rokhsar D.S. Sea anemone genome reveals ancestral eumetazoan gene repertoires and genomic organization. Science. 2007;6;317(5834):86–94. doi: 10.1126/science.1139158
163. Hall B.K. Evolutionary Developmental Biology. 2nd edition. Dordrecht: Kluwer Academic Publ., 1999. 509 p.
164. Hall B.K. The neural crest as a fourth germ layer and vertebrates as quadroblastic not triploblastic. Evol. Dev. 2000;2(1):3–5. doi: 10.1046/j.1525-142x.2000.00032.x
165. Opitz J.M., Clark E.B. Heart development: an introduction. Am. J. Med. Gen. 2000;97(4):238–247. doi:10.1002/1096-8628(200024)97:4<238::AIDAJMG1274>3.0.CO;2-G
166. Carstens M.H. Development of the facial midline. J. Craniofac. Surg. 2002;13(1):129–187. doi: 10.1097/00001665-200201000-00032
167. Stone J.R., Hall B.K. Latent homologues for the neural crest as an evolutionary novelty. Evol. Dev. 2004;6(2):123–129. doi: 10.1111/j.1525-142x.2004.04014.x
168. Hall B.K. Bone and cartilage: developmental and evolutionary skeletal biology. Elsevier, 2015. doi: 10.1016/C2013-0-00143-0
169. Vickaryous M.K., Hall B.K. Human cell type diversity, evolution, development, and classification with special reference to cells derived from the neural crest. Biol. Rev. Camb. Philos. Soc. 2006;81(3):425–455. doi: 10.1017/S1464793106007068
170. Martinez-Morales J.-R., Henrich T., Ramialison M., Wittbrodt J. New genes in the evolution of the neural crest differentiation program. Genome Biol. 2007;8(3):R36. doi: 10.1186/gb-2007-8-3-r36
Рецензия
Для цитирования:
Пахомова Н.Ю., Строкова Е.Л., Корыткин А.А., Кожевников В.В., Гусев А.Ф., Зайдман А.М. История изучения нервного гребня (обзор). Сибирский научный медицинский журнал. 2023;43(1):13-29. https://doi.org/10.18699/SSMJ20230102
For citation:
Pakhomova N.Yu., Strokova E.L., Korytkin A.A., Kozhevnikov V.V., Gusev A.F., Zaydman A.M. History of the study of the neural crest (review). Сибирский научный медицинский журнал. 2023;43(1):13-29. (In Russ.) https://doi.org/10.18699/SSMJ20230102