Preview

Сибирский научный медицинский журнал

Advanced search

Analysis of kinematic and kinetic parameters of pace in cerebral palsy patients with internal torsion hip deformity

https://doi.org/10.18699/SSMJ20220311

Abstract

Literature data on the correlation between femoral torsion during clinical examination and during walking are different. Aim of the study was to compare kinetics and kinematics in cerebral palsy patients with iatrogenic crouch gait pattern with and without clinically diagnosed internal femoral torsion. Material and methods. Comparative analysis of clinical examination and three-dimensional gait analysis (3DGA) was performed in 61 subjects (122 limbs), GMFCS II with iatrogenic crouch gait pattern. The average age was 14.5 ± 2.5 years. This sample was formed in 20182021. Kinetic and kinematic data were recorded by Qualisys 7+ optical cameras (8 cameras) with passive marker video capture technology, synchronized with six KISTLER dyno platforms (Switzerland). The analysis was performed in the QTM (Qualisys) and Visual3D (C-Motion) programs with automated calculation of values. Based on the clinical data, all the patients were divided as follows: I – no clinically detected internal femoral torsion – 50 limbs, II – clinically detected internal femoral torsion – 68 limbs. Results. Comparison of the values of kinematics and kinetics in groups of patients according to the criterion of clinically detected/not detected had statistically significant differences in kinematics – the maximum and minimum values of femur and tibia torsion relative to the norm. Differential diagnosis of compensated/decompensated internal femoral torsion was represented by multidirectional values of the angle of foot positioning relative to the motion vector. The kinetic parameters in the groups were statistically doubtful, because they depended on the walking speed of patients, their ability to move. Conclusions. The values of maximum femoral torsion angle up to 22° were not clinically interpreted as internal femoral torsion, those from 22° to 28° can be interpreted both with clinically revealed femoral torsion (68 %) and with the absence of femoral torsion (22 %), which corresponds to the risk group, those more than 28° fell into the group of clinically diagnosed internal femoral torsion.

About the Authors

G. M. Chibirov
Russian Ilizarov Scientific Center «Restorative Traumatology and Orthopaedics» of Minzdrav of Russia
Russian Federation

Georgii M. Chibirov, candidate of medical sciences

640014, Kurgan, M. Ulianova str., 6



T. I. Dolganova
Russian Ilizarov Scientific Center «Restorative Traumatology and Orthopaedics» of Minzdrav of Russia
Russian Federation

Tamara I. Dolganova, doctor of medical science

640014, Kurgan, M. Ulianova str., 6



D. A. Popkov
Russian Ilizarov Scientific Center «Restorative Traumatology and Orthopaedics» of Minzdrav of Russia
Russian Federation

Dmitrii A. Popkov, doctor of medical sciences, professor of RAS

640014, Kurgan, M. Ulianova str., 6



L. V. Smolkova
Russian Ilizarov Scientific Center «Restorative Traumatology and Orthopaedics» of Minzdrav of Russia
Russian Federation

Lidiia V. Smolkova

640014, Kurgan, M. Ulianova str., 6



A. O. Trofimov
Russian Ilizarov Scientific Center «Restorative Traumatology and Orthopaedics» of Minzdrav of Russia
Russian Federation

Anatolii O. Trofimov

640014, Kurgan, M. Ulianova str., 6



D. V. Dolganov
Russian Ilizarov Scientific Center «Restorative Traumatology and Orthopaedics» of Minzdrav of Russia
Russian Federation

Dmitrii V. Dolganov, candidate of biological sciences

640014, Kurgan, M. Ulianova str., 6



References

1. Rethlefsen S.A., Kay R.M. Transverse plane gait problems in children with cerebral palsy. J. Pediatr. Orthop. 2013;33(4):422–430. doi:10.1097/ BPO.0b013e3182784e16

2. Gage J.R., Schwartz M.H., Koop S.E., Novacheck T.F. The identification and treatment of gait problems in cerebral palsy. 2nd ed. London: Mac Keith Press, 2009; 285–236.

3. O’Sullivan R., Walsh M., Hewart P., Jenkinson A., Ross LA., O’Brien T. Factors associated with internal hip rotation gait in patients with cerebral palsy. J. Pediatr. Orthop. 2006;26(4):537–541. doi: 10.1097/01. bpo.0000217727.93546.2b

4. Davids J.R., Benfanti P., Blackhurst D.W., Allen B.L. Assessment of femoral anteversion in children with cerebral palsy: accuracy of the trochanteric prominence angle test. J. Pediatr. Orthop. 2002;22(2):173–178.

5. Lee S.H., Chung C.Y., Park M.S., Choi I.H., Cho T.J. Tibial torsion in cerebral palsy: validity and reliability of measurement. Clin. Orthop. Relat. Res. 2009;467(8):2098–2104. doi: 10.1007/s11999-0090705-1

6. Sangeux M., Mahy J., Graham H.K. Do physical examination and CT-scan measures of femoral neck anteversion and tibial torsion relate to each other? Gait Posture. 2014;39(1):12–16. doi: 10.1016/j. gaitpost.2013.05.020

7. Winter S. Cerebral palsy. In: Health care for people with intellectual and developmental disabilities across the lifespan. Cham: Springer, 2016:931–938. doi: 10.1007/978-3-319-18096-0_80

8. Tretiakov M., Do K.P., Aiona M. The influence of the unaffected hip on gait kinematics in patients with hemiplegic cerebral palsy. J. Pediatr. Orthop. 2017;37(3):217–221. doi: 10.1097/ BPO.0000000000000620

9. Gapharov Kh.Z. Treatment of foot deformities in children. Kazan: Tatar Book Publishing House, 1990. 176 р.

10. Gapharov Kh.Z. Size of femoral bond torsion and its significance in treatment. Prakticheskaya meditsina = Practical Medicine. 2013;(1–2):37–44. [In Russian].

11. Nikolenko V.N., Fomicheva O.A., Zhmurko R.S., Yakovlev N.M., Bessonova O.S., Pavlov S.V. Individual and typological morphogeometric features of the proximal of femoral bone. Saratovskiy nauchno-meditsinskiy zhurnal = Saratov Journal of Medical Scientific Research. 2010; 6(1):36–39. [In Russian].

12. Uemura K., Atkins P.R., Fiorentino N.M., Anderson A.E. Hip rotation during standing and dynamic activities and the compensatory effect of femoral anteversion: An in vivo analysis of asymptomatic young adults using three-dimensional computed tomography models and dual fluoroscopy. Gait Posture. 2018;61:276–281. doi: 10.1016/j.gaitpost.2018.01.016

13. Braatz F., Wolf S.I., Gerber A., Klotz M.C., Dreher T. Do changes in torsional magnetic resonance imaging reflect improvement in gait after femoral derotation osteotomy in patients with cerebral palsy? Int. Orthop. 2013;37(11):2193–2198. doi: 10.1007/s00264013-2054-7

14. Lee K.M., Chung C.Y., Sung K.H., Kim T.W., Lee S.Y., Park M.S. Femoral anteversion and tibial torsion only explain 25 % of variance in regression analysis of foot progression angle in children with diplegic cerebral palsy. J. Neuroeng. Rehabil. 2013;10:56. doi: 10.1186/1743-0003-10-56

15. Radler C., Kranzl A., Manner H.M., Höglinger M., Ganger R., Grill F. Torsional profile versus gait analysis: consistency between the anatomic torsion and the resulting gait pattern in patients with rotational malalignment of the lower extremity. Gait Posture. 2010;32(3):405–410. doi: 10.1016/j.gaitpost.2010.06.019

16. Carriero A., Zavatsky A., Stebbins J., Theologis T., Shefelbine S.J. Correlation between lower limb bone morphology and gait characteristics in children with spastic diplegic cerebral palsy. J. Pediatr. Orthop. 2009;29(1):73–79. doi: 10.1097/ BPO.0b013e31819224d

17. Teixeira F.B., Ramalho A.Jr., de Morais Filho M.C., Speciali D.S., Kawamura C.M., Lopes J.A.F., Blumetti F.C. Correlation between physical examination and three-dimensional gait analysis in the assessment of rotational abnormalities in children with cerebral palsy. Einstein (Sao Paulo). 2018;16(1):eAO4247. doi: 10.1590/s1679-45082018ao4247

18. Kerr A.M., Kirtley S.J., Hillman S.J., van der Linden M.L., Hazlewood M.E., Robb J.E. The midpoint of passive hip rotation range is an indicator of hip rotation in gait in cerebral palsy. Gait Posture. 2003;17(1):88–91. doi: 10.1016/s0966-6362(02)00056-5

19. de Morais Filho M.C., Neves D.L., Abreu F.P., Kawamura C.M., dos Santos C.A. Does the level of proximal femur rotation osteotomy influence the correction results in patients with cerebral palsy? J. Pediatr. Orthop. B. 2013;22(1):8–13.doi: 10.1097/ BPB.0b013e3283571796

20. Aktas S., Aiona M.D., Orendurff M. Evaluation of rotational gait abnormality in the patients cerebral palsy. J. Pediatr. Orthop. 2000;20(2):217–220.

21. Popkov D.A., Chibirov G.M., Kozhevnikov V.V., Gvozdev N.S. Multilevel orthopaedic surgery in children with spastic cerebral palsy. Geniy ortopedii = Genius of Orthopaedic. 2021;27(4):475–480. [In Russian]. doi: 10.18019/1028-4427-2021-27-4-475-480

22. Dolganova T.I., Gatamov O.I., Chibirov G.M., Dolganov D.V., Popkov D.A. Clinical and biomechanical results of multilevel orthopaedic interventions in crouch-gait patients. Geniy ortopedii = Genius of Orthopaedics. 2020;26(3):325–333. [In Russian]. doi: 10.18019/1028-4427-2020-26-3-325-333

23. Rodda J., Graham H.K. Classification of gait patterns in spastic hemiplegia and spastic diplegia: a basis for a management algorithm. Eur. J. Neurol. 2001;8(5):98–108. doi: 10.1046/j.14681331.2001.00042.x

24. Gomez-Andres D., Pulido-Valdeolivas I., Martin-Gonzalo J.A., Lopez-Lopez J., Martinez-Caballero I., Gomez-Barrena E., Rausell E. External evaluation of gait and functional changes after a single-session multiple myofibrotenotomy in school-aged children with spastic diplegia. Rev. Neurol. 2014;58(6):247–254.

25. Pilloni G., Pau M., Costici F., Condoluci C., Galli M. Use of 3D gait analysis as predictor of Achilles tendon lengthening surgery outcomes in children with cerebral palsy. Eur. J. Phys. Rehabil. Med. 2018;55(2):250–257. doi: 10.23736/S19739087.18.05326-1

26. Dietz F.R., Albright J.C., Dolan L. Mediumterm follow-up of Achilles tendon lengthening in the treatment of ankle equinus in cerebral palsy. Iowa Orthop. J. 2006;26:27–32.

27. Marx V.O. Orthopedic diagnostics: handbook. Minsk: Science and Technology, 1978. 512 p. [In Russian].

28. Aksenov A.Yu., Heath G.H., Klishkovskaya T.A., Dolganova T.I. Optimising video-based data capture for pathological gait analysis in children with cerebral palsy using a limited number of retro-reflective cameras (literature review). Geniy ortopedii = Genius of Orthopaedics. 2019;25(1):102–110. [In Russian]. doi: 10.18019/1028-4427-2019-25-1-102-110

29. Aksenov A.Yu., Klishkovskaya T.A. Program for the formation of a human walking biomechanics report. Patent RF № 2020665238; published 24.11.2020. [In Russian].

30. Umberger B.R., Martin P.E. Mechanical power and efficiency of level walking with different stride rates. J. Exp. Biol. 2007 Sep; 210(18):3255–3265. doi: 10.1242/jeb.000950

31. Dolganova T.I., Chibirov G.M., Dolganov D.V., Popkov D.A. Results of clinical and instrumental analysis of gait in children with spastic forms of cerebral palsy. Meditsinskiy vestnik Severnogo Kavkaza = Medical News of the North Caucasus. 2020;15(2):255–259. [In Russian]. doi: 10.14300/mnnc.2020.15060

32. Lynn T. Staheli. Practice of pediatric orthopedics. Springhouse Pub Co, 2006. 460 р.

33. Brunner R., Rutz E. Biomechanics and muscle function during gait. J. Child. Orthop. 2013;7(5):367– 371. doi: 10.1007/s11832-013-0508-5

34. Gaston M.S., Rutz E., Dreher T., Brunner R. Transverse plane rotation of the foot and transverse hip and pelvic kinematics in diplegic cerebral palsy. Gait. Posture. 2011;34(2):218–221. doi: 10.1016/j. gaitpost.2011.05.001

35. O’Sullivan R., Kiernan D. Recurrent internal hip rotation gait in cerebral palsy: Case reports of two patients. HRB Open Res. 2019;1:28. doi: 10.12688/hrbopenres.12893.2

36. Niklasch M., Wolf S.I., Klotz M.C., Geisbüsch A., Brunner R., Döderlein L., Dreher T. Factors associated with recurrence after femoral derotation osteotomy in cerebral palsy. Gait Posture. 2015;42(4):460– 465. doi: 10.1016/j.gaitpost.2015.07.059

37. Skvortsov D.V. Diagnostics of motor pathology by instrumental methods: gait analysis, stabilometry. Moscow: T.M. Andreeva, 2007. 640 p. [In Russian].

38. Gage J.R. Gait analysis. An essential tool in the treatment of cerebral palsy. Clin. Orthop. Relat. Res. 1993;(288):126–134.


Review

For citations:


Chibirov G.M., Dolganova T.I., Popkov D.A., Smolkova L.V., Trofimov A.O., Dolganov D.V. Analysis of kinematic and kinetic parameters of pace in cerebral palsy patients with internal torsion hip deformity. Сибирский научный медицинский журнал. 2022;42(3):83–93. (In Russ.) https://doi.org/10.18699/SSMJ20220311

Views: 324


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)