Preview

Сибирский научный медицинский журнал

Advanced search

Investigation of the antiviral activity of the recombinant human interferon lambda 1 in human conjunctiva cell culture

https://doi.org/10.18699/SSMJ20210504

Abstract

The aim of the study was to determine the efficacy of recombinant human interferon lambda 1 (IFN-λ1) against human adenovirus serotype 5 in a culture of human conjunctival cells Chang conjunctiva clone 1-5c-4. Material and methods. The study design consisted of three experimental schemes, reflecting a prophylactic and two options for a therapeutic and prophylactic treatment regimen (with the constant presence of the virus in the culture medium and with its removal after adsorption). The antiviral activity of IFN-λ1 was determined by the number of viable cells after exposure to the virus (MTT test). Results and discussion. It has been established that IFN-λ1 has antiviral activity against human adenovirus in vitro under a prophylactic and therapeutic-prophylactic scheme of administration at an infection dose of 1 and 10 TCID50 (50% tissue culture infectious dose), but not at an infection dose of 100 TCID50. The antiviral effect of the use of IFN-λ1 in a therapeutic and prophylactic regimen at an infection dose of 1 TCID50 was comparable to that of IFN-α. At the same time, both interferons did not have a toxic effect on the cell culture even at a concentration of 84 and 58 μg/ml, respectively. The antiviral activity and the absence of cytotoxic action provide the basis for further study of the possibility of development of based on IFN-λ1 drug for eye conjunctiva viral diseases treatment.

About the Authors

N. A. Kikhtenko
Novosibirsk State Medical University of Minzdrav of Russia
Russian Federation

Nikolay A. Kikhtenko

630091, Novosibirsk, Krasny av., 52



T. N. Ilyicheva
Novosibirsk State University
Russian Federation

Tatyana N. Ilyicheva, doctor of biological science, professor

630090, Novosibirsk, Pirogov str., 1



A. G. Durymanov
Novosibirsk State University
Russian Federation

Alexander G. Durymanov

630090, Novosibirsk, Pirogov str., 1



A. Zh. Fursova
Novosibirsk State Medical University of Minzdrav of Russia
Russian Federation

Anzhella Zh. Fursova, doctor of medical sciences

630091, Novosibirsk, Krasny av., 52



P. G. Madonov
Novosibirsk State Medical University of Minzdrav of Russia
Russian Federation

Pavel G. Madonov, doctor of medical sciences

630091, Novosibirsk, Krasny av., 52



References

1. Hashimoto S., Gonzalez G., Harada S., Oosako H., Hanaoka N., Hinokuma R., Fujimoto T. Recombinant type Human mastadenovirus D85 associated with epidemic keratoconjunctivitis since 2015 in Japan. J. Med. Virol. 2018; 90 (5): 881–889. doi: 10.1002/jmv.25041

2. Crenshaw B.J., Jones L.B., Bell C.R., Kumar S., Matthews Q.L. Perspective on adenoviruses: epidemiology, pathogenicity, and gene therapy. Biomedicines. 2019; 7 (3): 61. doi: 10.3390/biomedicines7030061

3. Sambursky R., Tauber S., Schirra F., Kozich K., Davidson R., Cohen E.J. The RPS adeno detector for diagnosing adenoviral conjunctivitis. Ophthalmology. 2006; 113 (10): 1758–1764. doi: 10.1016/j.ophtha.2006.06.029

4. Lee C.S., Lee A.Y., Akileswaran L., Stroman D., Najafi-Tagol K., Kleiboeker S., Chodosh J., Magaret A., Wald A., van Gelder R.N.; BAYnovation Study Group. Determinants of outcomes of adenoviral keratoconjunctivitis. Ophthalmology. 2018; 125 (9): 1344–1353. doi: 10.1016/j.ophtha.2018.02.016

5. Jonas R.A., Ung L., Rajaiya J., Chodosh J. Mystery eye: Human adenovirus and the enigma of epidemic keratoconjunctivitis. Prog. Retin. Eye Res. 2020; 76: 100826. doi: 10.1016/j.preteyeres.2019.100826

6. Trufanov S.V., Malozhen S.A., Krakhmaleva D.A., Pivin E.A. Adenoviral epidemic keratoconjunctivitis. Rossiyskiy meditsinskiy zhurnal. Klinicheskaya oftal’mologiya = Medical Journal of the Russian. Clinical Ophthalmology. 2016; 16 (3): 144–150. [In Russian].

7. Choudhry A.., Mathena J., Albano J.D., Yacovone M., Collins L. Safety evaluation of adenovirus type 4 and type 7 vaccine live, oral in military recruits. Vaccine. 2016; 34: 4558–4564. doi: 10.1016/j.vaccine.2016.07.033

8. Ye L., Schnepf D., Staeheli P. Interferon-λ orchestrates innate and adaptive mucosal immune responses. Nat. Rev. Immunol. 2019; 19 (10): 614–625. doi: 10.1038/s41577-019-0182-z

9. Lazear H.M., Schoggins J.W., Diamond M.S. Shared and distinct functions of type I and type III interferons. Immunity. 2019; 50 (4): 907–923. doi: 10.1016/j.immuni.2019.03.025

10. Jaggi U., Bhela S., Rouse B.T. Role of interferon lambda (il-28a) in herpes stromal keratitis. J. Immunol. Res. Ther. 2018; 3 (1): 135–144.

11. Antony F., Pundkar C., Sandey M., Jaiswal A.K., Mishra A., Kumar A., Channappanavar R., Suryawanshi A. IFN-λ regulates neutrophil biology to suppress inflammation in herpes simplex virus-1-induced corneal immunopathology. J. Immunol. 2021; 206 (8): 1866–1877. doi: 10.4049/jimmunol.2000979

12. Plotnikova M., Lozhkov A., Romanovskaya-Romanko E., Baranovskaya I., Sergeeva M., Kаа K., Klotchenko S., Vasin A. IFN-λ1 displays various levels of antiviral activity in vitro in a select panel of RNA viruses. Viruses. 2021; 13 (8): 1602. doi: 10.3390/v13081602

13. Hermant P., Michiels T. Interferon-λ in the context of viral infections: production, response and therapeutic implications. J. Innate Immun. 2014; 6 (5): 563–574. doi: 10.1159/000360084


Review

Views: 304


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)