Preview

Сибирский научный медицинский журнал

Advanced search

Dendritic cell vaccines in immunotherapy of gynecological malignancies: current strategies and clinical perspectives

https://doi.org/10.18699/SSMJ20250614

Abstract

Immunotherapeutic vaccines are a promising direction in the treatment of oncological diseases. In recent years, significant progress has been made in understanding the mechanisms of interaction between the immune system and tumor cells and in developing strategies to overcome tumor immunosuppression. Aim of the study was to systematize modern data on the development and clinical use of dendritic cell (DC) vaccines for the treatment of gynecological cancer, evaluate their effectiveness, identify key limitations and promising strategies for enhancing the antitumor response. Material and methods. The PubMed, Google Scholar and eLIBRARY.RU databases were used to write the literature review. Results. Clinical studies demonstrate that DC vaccines are capable of inducing a specific antitumor immune response, increasing relapse-free and overall survival in patients with gynecological cancers. The greatest efficiency is observed in combination with chemotherapy, especially when using personalized vaccines based on autologous tumor lysates or neoantigens. However, limitations to their widespread use include response heterogeneity, manufacturing complexity, and the need to optimize the timing of administration relative to other treatments. Conclusions. DC vaccines represent a promising direction for immunotherapy of gynecologic malignancies, but require further research to overcome current limitations. The development of personalized approaches and combination strategies could significantly improve their clinical effectiveness.

About the Authors

E. M. Frantsiyants
National Medical Research Centre for Oncology of Minzdrav of Russia
Russian Federation

Elena M. Frantsiyants - doctor of biological sciences, professor.

344037, Rostov-on-Don, 14 line st., 63



V. A. Bandovkina
National Medical Research Centre for Oncology of Minzdrav of Russia
Russian Federation

Valerija A. Bandovkina - doctor of biological sciences.

344037, Rostov-on-Don, 14 line st., 63



I. V. Neskubina
National Medical Research Centre for Oncology of Minzdrav of Russia
Russian Federation

Irina V. Neskubina - doctor of biological sciences.

344037, Rostov-on-Don, 14 line st., 63



A. P. Menshenina
National Medical Research Centre for Oncology of Minzdrav of Russia
Russian Federation

Anna P. Menshenina - doctor of medical sciences.

344037, Rostov-on-Don, 14 line st., 63



T. I. Moiseenko
National Medical Research Centre for Oncology of Minzdrav of Russia
Russian Federation

Tatiana I. Moiseenko - doctor of medical sciences, professor.

344037, Rostov-on-Don, 14 line st., 63



E. A. Ozerkova
National Medical Research Centre for Oncology of Minzdrav of Russia
Russian Federation

Elena A. Ozerkova

344037, Rostov-on-Don, 14 line st., 63



E. I. Surikova
National Medical Research Centre for Oncology of Minzdrav of Russia
Russian Federation

Ekaterina I. Surikova - candidate of biological sciences.

344037, Rostov-on-Don, 14 line st., 63



A. I. Shikhlyarova
National Medical Research Centre for Oncology of Minzdrav of Russia
Russian Federation

Alla I. Shikhlyarova - doctor of biological sciences, professor.

344037, Rostov-on-Don, 14 line st., 63



References

1. Kaprin A.D., Starinskij V.V., Shahzadova A.O. The state of oncological care for the population of Russia in 2024. Moscow: MNIOI, 2025. 239 p. [In Russian].

2. Siegel R.L., Kratzer T.B., Giaquinto A.N., Sung H., Jemal A. Cancer statistics, 2025. CA Cancer J. Clin. 2025;75(1):10–45. doi: 10.3322/caac.21871

3. Sheikhhasan M., Ahmadieh-Yazdi A., Heydari R., Chamanara M., Akbari M., Pundla N., Young P., Malik S., Manuchiri H., Tanzadepana H., … Kalhor N. Revolutionizing cancer treatment: the power of dendritic cell vaccines in immunotherapy. Biomed. Pharmacother. 2025;184:117858. doi: 10.1016/j.biopha.2025.117858

4. Shamova T.V., Sitkovskaya A.O., Vashchenko L.N., Kechedzhieva E.E. Adoptive cell therapy: current advances. Yuzhno-Rossiyskiy onkologicheskiy zhurnal = South Russian Journal of Cancer. 2020;1(1):43–59. [In Russian] doi:10.37748/2687-0533-2020-1-1-4

5. Sahin U., Tureci O. Personalized vaccines for cancer immunotherapy. Science. 2018;359(6382):1355– 1360. doi: 10.1126/science.aar7112

6. Hollingsworth R.E., Jansen K. A turning point in therapeutic cancer vaccine development. NPJ Vaccines. 2019;4:7. doi: 10.1038/s41541-019-0103-y

7. Sariwalasis A., Budukje S., Balint K., Stevenson B.J., Gannon P.O., Iancu E.M., Rossier L., Martin Lluijsma S., Matewet P., Sempu K., … Kandalaft L.E. A phase I/II study comparing autologous dendritic cell vaccine activated by either personalized peptides (PEPDC) or tumor lysate (OC-DC) in patients with advanced high-grade serous ovarian carcinoma. J. Transl. Med. 2019;17(1):391. doi: 10.1186/s12967-019-02133-w

8. Wculek S.K., Cueto F.J., Mujal A.M., Melero I., Krummel M.F., Sancho D. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 2020;20(1):7–24. doi: 10.1038/s41577-019-0210-z

9. Anguil S., Smits E.L., Lyon E., van Tendeloo W.F., Berneman Z.N. Clinical applications of dendritic cells for cancer treatment. Lancet Oncol. 2014;15(7):e257–67. doi: 10.1016/s1470-2045(13)70585-0

10. Sprooten J., Ceusters J., Coosemans A., Agostinis P., de Vleeschouwer S., Zitvogel L., Kroemer G., Galluzzi L., Garg A.D. Trial watch: dendritic cell vaccination for cancer immunotherapy. Oncoimmunology. 2019;8(11):e1638212. doi: 10.1080/2162402X.2019.1638212

11. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2020. CA: Cancer J. Clin. 2020;70(1):7–30. doi: 10.3322/caac.21590

12. Caro A.A, Deschoemaeker S., Allonsius L., Coosemans A., Laoui D. Dendritic cell vaccines: a promising approach in the fight against ovarian cancer. Cancers (Basel). 2022;14(16):4037. doi: 10.3390/cancers14164037

13. Rahma O.E., Astar E., Chistovska M., Shainik M.E., Wieckowski E., Bernstein S., Herrin W.E., Shams M.A., Steinberg S.M., Merino M., … Khleif S.N. A gynecologic oncology group phase II trial of two p53 peptide vaccine approaches: subcutaneous injection and intravenous pulsed dendritic cells in high recurrence risk ovarian cancer patients. Cancer Immunotherapy. 2012;61(3):373–384. doi: 10.1007/s00262011-1100-9

14. Tanyi J.L., Bobisse S., Ophir E., Tuyaerts S., Roberti A., Genolet R., Baumgartner P., Stevenson B.J., Iseli C., Dangaj D., … Kandalaft L.E. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci. Transl. Med. 2018;10(436):eaao5931. doi: 10.1126/scitranslmed.aao5931

15. Zhang S., He T., Li Y., Chen L., Liu H., Wu Y., Guo H. Dendritic cell vaccines for ovarian cancer. Front. Immunol. 2021;11:613773. doi: 10.3389/fimmu.2020.613773

16. Tanyi J.L., Chiang C.L., Chiffelle J., Thierry A.C., Baumgartener P., Huber F., Goepfert C., Tarussio D., Tissot S., Torigian D.A., … Kandalaft L.E. Personalized cancer vaccine strategy elicits polyfunctional T cells and demonstrates clinical benefits in ovarian cancer. NPJ Vaccines. 2021;6(1):36. doi: 10.1038/s41541-021-00297-5

17. Lee S.W., Lee H., Lee K.W., Kim M.J., Kang S.W., Lee Y.J., Kim H., Kim Y.M. CD8α+ dendritic cells potentiate antitumor and immune activities against murine ovarian cancers. Sci. Rep. 2023;13(1):98. doi:10.1038/s41598-022-27303-7

18. Guo J., de May H., Franco S., Noureddine A., Tang L., Brinker C.J., Kusewitt D.F., Adams S.F., Serda R.E. Cancer vaccines from cryogenically silicified tumour cells functionalized with pathogen-associated molecular patterns. Nat. Biomed. Eng. 2022;6(1):19–31. doi: 10.1038/s41551-021-00795-w

19. Cheng S., Xu S., Jin Y., Li Y., Zhong S., Ma J., Yang J., Zhang N., Li Y., Wang S., Yang Z., Wang Y. Artificial mini dendritic cells enhance T cell-based immunotherapy in ovarian cancer. Adv. Sci. (Weinhe). 2020;7(7):1903301. doi: 10.1002/advs.201903301

20. Cibula D., Rob L., Mallmann P., Knapp P., Klat J., Chovanec J., Minar L., Melichar B., Hein A., Kieszko D., … Spisek R. Dendritic cell-based immunotherapy (DCVAC/OvCa) combined with second-line chemotherapy in platinum-sensitive ovarian cancer (SOV02): A randomized, open-label, phase 2 trial. Gynecol. Oncol. 2021;162(3):652–660. doi: 10.1016/j.ygyno.2021.07.003

21. Harari A., Sarivalasis A., de Jong K., Thierry A.C., Huber F., Boudouqwi S., Rosier L., Orcurto A., Imbimbo M., Baumgartner P., Bassani-Sternberg M., Kandalaft L.E. A personalized neoantigen vaccine combined with platinum-based chemotherapy induces a T cell response consistent with a complete response in endometrial carcinoma. Cancer (Basel). 2021;13(22):5801. doi: 10.3390/cancers13225801

22. Crosby E.J., Kitson S.J., McAlpine J.N., Mukhopadhyay A., Powell M.E., Singh N. Endometrial cancer. Lancet. 2022;399(10333):1412–1428. doi: 10.1016/S0140-6736(22)00323-3

23. Ocknin A., Bosse T.J., Kreutzberg K.L., Giornelli G., Harter P., Joly F., Lorusso D., March K., Macker V., Mirza M.R., Ledermann J.A., Colombo N. Endometrial cancer: ESMO clinical practice guidelines for diagnosis, treatment and surveillance. Ann. Oncol. 2022;33(9):860–877. doi: 10.1016/j.annonc.2022.05.009

24. Kandoth C., Schultz N., Cherniack A.D., Akbani R., Liu Y., Shen H., Robertson A.G., Pashtan I., Shen R., Benz C.C., … Levine D.A. Integrated genomic characterization of endometrial carcinoma. Cancer Genome Atlas Research Network; Nature. 2013;497(7447):67–73. doi: 10.1038/nature12113

25. de Jong R.A., Leffers N., Bosen H.M., Ten Hoor K.A., van der Zee A.G., Hollema H., Neumann H.W. The presence of tumor-infiltrating lymphocytes is an independent prognostic factor in endometrial cancer types I and II. Gynecol.Oncol. 2009;114(1):105–110. doi: 10.1016/j.ygyno.2009.03.022

26. Vkulek S.K., Cueto F.H., Mukhal A.M., Melero I., Krummel M.F., Sancho D. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 2020;20(1):7–24. doi: 10.1038/s41577-019-0210-z

27. Di Tucci C., Capone C., Galati G., Iacobelli V., Schiavi M.C., Di Donato V., Musii L., Panichi P.B. Immunotherapy in endometrial cancer: new scenarios on the horizon. Gynecologic Oncology. 2019;30(3):e46. doi: 10.3802/jgo.2019.30.e46

28. Song Q., Zhang C.D., Wu X.H. Therapeutic cancer vaccines: From initial findings to prospects. Immunol. Lett. 2018;196:11–21. doi: 10.1016/j.imlet.2018.01.011

29. Feng J., He H. Identification of tumor antigens and immune subtypes in cancer vaccine development for endometrial carcinoma. Scand. J. Immunol. 2023;97(3):e13250. doi: 10.1111/sji.13250

30. van Wiegheeren G.F., de Haas N., Mulder T.A., Horrevoorts S.C., Bloemendaal M., HinsDebry S., Mao Y., Kiessling R., van Herpen K.M.L., Flores-Grau G., Hato S.V., De Vries I.J.M. Cisplatin suppresses the frequency and suppressive activity of monocytic myeloid-derived suppressor cells in cancer patients. Oncoimmunology. 2021;10(1):1935557. doi: 10.1080/2162402X.2021.1935557

31. Boudewijns S., Bloemendaal M., de Haas N., Westorff H., Bol K.F., Schreibelt G., Aarntzen E.G., Lesterhaus W.J., Gorris M.A.J., Krukewitt A., … de Vries I.J.M. Autologous vaccination with monocytederived dendritic cells in combination with cisplatin in patients with stage III and IV melanoma: a prospective, randomized phase 2 study. Cancer Immunol. Immunother. 2020;69(3):477–488. doi: 10.1007/s00262019-02466-x

32. Koeneman B.J., Schreibelt G., Gorris M.A.J., Hinsde Bree S., Westorff H., Ottevanger P.B., de Vries I.J.M. Dendritic cell vaccination in combination with carboplatin/paclitaxel in patients with metastatic endometrial cancer: results from a phase I/II study. Front. Immunol. 2024;15:1368103. doi: 10.3389/fimmu.2024.1368103

33. Melif K.J.M., Welters M.J.P., Vergote I., Kroep J.R., Kenter G.G., Ottevanger P.B., Tjalma W.A.A., Denis H., van Poelgeest M.I.E., Neumann H.W., … van der Burg S.H. Strong immune response to a vaccine during chemotherapy is associated with increased survival in cancer. Sci. Transl. Med. 2020;12(535):eaaz8235. doi: 10.1126/scitranslmed.aaz8235

34. Kalogera E., Nevala W.K., Finnes H.D., Suman V.J., Schimke J.M., Strand C.A., Kottschade L.A., Kudgus R.A., Buhrow S.A., Becher L.R., … Block M.S. A phase I trial of nab-paclitaxel/bevacizumab (AB160) nano-immunoconjugate therapy for gynecologic malignancies. Clin. Cancer Res. 2024;30(12):2623–2635. doi: 10.1158/1078-0432.CCR-23-3196

35. Arbyn M., Weiderpass E., Bruni L., de Sanjosé S., Saraiya M., Ferlay J., Bray F. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob. Health. 2020;8(2):e191– e203. doi: 10.1016/S2214-109X(19)30482-6

36. Goroshinskaya I.A., Kachesova P.S., Nerodo G.A., Kalabanova E.A., Shalashnaya E.V., Surikova E.I., Nemashkalova L.A., Neskubina I.V. Comparative study of oxidation processes of proteins and lipids in blood plasma in the cervical cancer patients with and without metastases. Palliativnaya meditsina i reabilitatsiya = Palliative Medicine and Rehabilitation. 2011;(1):45–49. [In Russian]

37. Vodolazhskiy D.I., Menshenina A.P., Dvadnenko K.V., Novikova I.A., Zlatnik E.Yu., Bakhtin A.V., Moiseenko T.I., Selyutina O.N., Frantsiyants E.M. Experience of dendritic cell vaccine design for cervical cancer treatment. Fundamental’nye issledovaniya = Fundamental Research. 2015;(1-4):716–720. [In Russian].

38. Menshenina A.P., Goroshinskaya I.A., Frantsiyants E.M., Moiseenko T.I., Verenikina E.V., Kaplieva I.V., Nemashkalova L.A. Effect of dendritic cell vaccine on blood redox status in patients with cervical cancer. Issledovaniya i praktika v meditsine = Research and Practical Medicine Journal. 2023;10(1):36–49. [In Russian] doi: 10.17709/2410-1893-2023-10-1-3

39. Shankar S., Prasad D., Sanawar R., Das A.V., Pillai M.R. TALEN based HPV-E7 editing triggers necrotic cell death in cervical cancer cells. Sci. Rep. 2017;7(1):5500. doi: 10.1038/s41598-017-05696-0

40. Ramanathan P., Ganeshrajah S., Raghanvan R.K., Singh S.S., Thangarajan R. Development and clinical evaluation of dendritic cell vaccines for HPV related cervical cancer--a feasibility study. Asian. Pac. J. Cancer Prev. 2014;15(14):5909–5916. doi: 10.7314/apjcp.2014.15.14.5909

41. Dhandapani H., Seetharaman A., Jayakumar H., Ganeshrajah S., Singh S.S., Thangarajan R., Ramanathan P. Autologous cervical tumor lysate pulsed dendritic cell stimulation followed by cisplatin treatment abrogates FOXP3+ cells in vitro. J. Gynecol. Oncol. 2021;32(4):e59. doi: 10.3802/jgo.2021.32.e59

42. Garg M., Kanojia D., Salhan S., Suri S., Gupta A., Lohiya N.K., Suri A. Sperm-associated antigen 9 is a biomarker for early cervical carcinoma. Cancer. 2009;115(12):2671–2683. doi: 10.1002/cncr.24293

43. Dhandapani H., Jayakumar H., Seetharaman A., Singh S.S., Ganeshrajah S., Jagadish N., Suri A., Thangarajan R., Ramanathan P. Dendritic cells matured with recombinant human sperm associated antigen 9 (rhSPAG9) induce CD4+, CD8+ T cells and activate NK cells: a potential candidate molecule for immunotherapy in cervical cancer. Cancer Cell Int. 2021;21(1):473. doi: 10.1186/s12935-021-01951-7

44. Feng J., Liu Y., Zhuang N., Chai Z., Liu L., Qian C., Li J., Shan J. EDA-E7 Activated DCs induces cytotoxic T lymphocyte immune responses against HPV expressing cervical cancer in human setting. Vaccines (Basel). 2023;11(2):320. doi: 10.3390/vaccines11020320

45. Pratiwi S.E., Israfil Y., Mardia M., Mahayarudin M., Ilmiavan M.I., Trianto H.F., Liana D.F., Amia Y. A novel therapeutic multi-epitope vaccine based on HPV 16 and 18 oncoproteins E6 and E7: an in silico approach. Bioimpacts. 2024;14(5):27846. doi: 10.34172/bi.2024.27846

46. Badillo-Godines O., Pedrosa-Saavedra A., Valverde-Garduño V., Bermudez-Morales V., Maldonado-Gama M., León-Letielier R., Bonifas L.S., Esquivel-Guadarrama F., Gutierrez-Xicotencatl L. Induction of therapeutic protection in a mouse model of HPV16-associated tumor by targeting the human papillomavirus-16 E5 protein in dendritic cells. Front. Immunol. 2021;12:593161. doi: 10.3389/fimmu.2021.593161

47. Baldin A.V., Savvateeva L.V., Bazhin A.V., Zamyatnin A.A. Jr. Dendritic cells in anticancer vaccination: rationale for ex vivo loading or in vivo targeting. Cancers (Basel). 2020;12(3):590. doi: 10.3390/cancers12030590

48. Salah A., Wang H., Li Y., Ji M., Ou WB., Qi N., Wu Y. Insights into dendritic cells in cancer immunotherapy: from bench to clinical applications. Front. Cell Dev. Biol. 2021;9:686544. doi: 10.3389/fcell.2021.686544


Review

Views: 20

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)