Preview

Сибирский научный медицинский журнал

Advanced search

Wound microbiome: mechanisms of pathogenicity and intermicrobial interactions of Pseudomonas aeruginosa and Staphylococcus aureus

https://doi.org/10.18699/SSMJ20250608

Abstract

Despite the extensive arsenal of antibacterial drugs and the diversity of new wound treatment technologies, it is fair to say that the problem of wound infection has not lost its relevance. As a rule, in patients with concomitant diseases (obesity, diabetes, sensory neuropathies, autoimmune diseases, etc.), the healing of wound defects is prolonged, which makes them especially vulnerable to infections. Wound infection is one of the decisive factors in the pathogenesis of chronic wounds associated with an increase in the number of multiresistant bacterial strains. Two most common wound pathogens are Pseudomonas aeruginosa and Staphylococcus aureus. Wound healing is mediated not only by complex coordinated cellular mechanisms, but also by the impact of the wound microbiome. Objective. Analysis of the mechanisms of pathogenicity and intermicrobial interactions of P. aeruginosa and S. aureus as a significant “instrument” of wound infection to identify priority strategies for antimicrobial therapy (combination antibacterial drugs, phage therapy, use of antimicrobial peptides etc.). Material and methods. A search and analysis of scientific literature for 2018­2025 was performed in the information resources PubMed, eLIBRARY.RU, Europe PMC, Web of Science, CyberLeninka. The search queries included the following combinations of words: for Russian­language publications chronic wound infection; biofilms in chronic wounds, pathophysiological mechanisms of wound healing; for English­language publications chronic wound infection, biofilms in chronic wounds, pathophysiological mechanisms of wound healing, chronic wound infection bacteria, acute and chronic wounds, P. aeruginosa, S. aureus, mechanisms of pathogenicity, virulent properties. Results and discussion. The review summarizes and presents the mechanisms of initiation of wound infection, determinants of virulence, pathogenicity, antibiotic resistance of P. aeruginosa and S. aureus, immune evasion strategies and features of intermicrobial interactions. Conclusions. Wound infections pose a significant global threat due to high rates of morbidity and mortality. P. aeruginosa and S. aureus remain the most common pathogens causing wound infections and form mixed biofilms that hamper their susceptibility to both antimicrobials and the host immune system. Both types of bacteria secrete a broad spectrum of virulence factors, including toxins and enzymes that facilitate their attachment to the wound surface and suppress the host immune response, leading to further tissue damage. Moreover, the spatial organization formed by these pathogens can influence their virulence properties and is key to understanding bacterial interactions within polymicrobial biofilms. Currently, combination antibacterial drugs, phage therapy, antimicrobial peptides, etc. are used to solve the problem of the growth of multidrug­resistant strains.

About the Authors

A. V. Lutsenko
Astrakhan State Medical University of Minzdrav of Russia; Astrakhan State Technical University
Russian Federation

Anna V. Lutsenko - candidate of biological sciences.

414000, Astrakhan, Bakinskaya st., 121; 414056, Astrakhan, Tatishcheva st., 16/1



M. A. Samotrueva
Astrakhan State Medical University of Minzdrav of Russia
Russian Federation

Marina A. Samotrueva - doctor of medical sciences, professor.

414000, Astrakhan, Bakinskaya st., 121



S. V. Poroyskiy
Astrakhan State Medical University of Minzdrav of Russia
Russian Federation

Sergey V. Poroyskiy - doctor of medical sciences.

414000, Astrakhan, Bakinskaya st., 121



References

1. Ahmad W., Aquil Z., Alam S.S. Historical background of wound care. Hamdan Medical Journal. 2020;13(4):189–195. doi: 10.4103/HMJ.HMJ_37_20

2. Sen C.K. Human wounds and its burden: an updated compendium of estimates. Adv. Wound Care (New Rochelle). 2019;8(2):39–48. doi: 10.1089/wound.2019.0946

3. Drago F., Gariazzo L., Cioni M., Trave I., Parodi A. The microbiome and its relevance in complex wounds. Eur. J. Dermatol. 2019;29(1):6–13. doi: 10.1684/ejd.2018.3486

4. Shettigar K., Murali T.S. Virulence factors and clonal diversity of Staphylococcus aureus in colonization and wound infection with emphasis on diabetic footi nfection. Eur. J. Clin. Microbiol. Infect. Dis. 2020;39(12):2235–2246. doi: 10.1007/s10096-020-03984-8

5. Baron J.M., Glatz M., Proksch E. Optimal support of wound healing: New Insights. Dermatology. 2020;236(6):593–600. doi: 10.1159/000505291

6. Tsibulevsky A.Yu., Dubovaya T.K., Demyanenko I.A. Models of wound healing. Krymskiy zhurnal eksperimental’noy i klinicheskoy meditsiny = Crimea Journal of Experimental and Clinical Medicine.2020;10(4):64–71. [In Russian]. doi: 10.37279/2224-6444-2020-10-4-64-71

7. Ellis S., Lin E. J., Tartar D. Immunology of wound healing. Curr. Dermatol. Rep. 2018;7(4):350–358. doi: 10.1007/s13671-018-0234-9

8. Las Heras K., Igartua M., Santos-Vizcaino E., Hernandez R.M. Chronic wounds: Current status, available strategies and emerging therapeutic solutions. J. Control Release. 2020;328:532–550. doi: 10.1016/j.jconrel.2020.09.039

9. Bowers S., Franco E. Chronic wounds: evaluation and management. Am. Fam. Physician. 2020;101(3):159–166.

10. Sachdeva C., Satyamoorthy K., Murali T.S. Microbial interplay in skin and chronic wounds. Current Clini. Microbiol. Rep. 2022;9(3):21–31. doi: 10.1007/s40588-022-00180-4

11. Lutsenko A.V., Yasenyavskaya A.L., Samotrueva M.A. Molecular mechanisms of antimicrobial defense strategy of bacterial cell. Rossiyskiy mediko-biologicheskiy vestnik imeni akademika Ivana Petrovicha Pavlova = I.P. Pavlov Russian Medical Biological Herald. 2025;33(1):133–144. [In Russian]. doi: 10.17816/PAVLOVJ569343

12. Peña O.A., Martin P. Cellular and molecular mechanisms of skin wound healing. Nat. Rev. Mol. Cell. Biol. 2024;25(8):1–18. doi: 10.1038/s41580-02400715-1

13. Maheswary T., Nurul A.A., Fauzi M.B. The insights of microbes’ roles in wound healing: A comprehensive review. Pharmaceutics. 2021;13(7):981. doi: 10.3390/pharmaceutics13070981

14. di Domizio J., Belkhodja C., Chenuet P., Fries A., Murray T., Mondéjar P.M., Demaria O., Conrad C., Homey B., Werner S., Speiser D. E., Ryffel B., Gilliet M. The commensal skin microbiota triggers type I IFN-dependent innate repair responses in injured skin. Nat. Immunol. 2020;21(9):1034–1045. doi: 10.1038/s41590-020-0721-6

15. Uberoi A., Bartow-McKenney C., Zheng Q., Flowers L., Campbell A., Knight S.A.B., Chan N., Wei M., Lovins V., Bugayev J., … Grice E.A. Commensal microbiota regulates skin barrier function and repair via signaling through the aryl hydrocarbon receptor. Cell Host Microbe. 2021;29(8):1235–1248.e8. doi: 10.1016/j.chom.2021.05.011

16. Flowers L., Grice E.A. The skin microbiota: balancing risk and reward. Cell Host Microbe. 2020;28(2):190–200. doi: 10.1016/j.chom.2020.06.017

17. Yuriko F., Chua H., Phe K., Lee E.P., Brown C.A. Infectious diseases management in wound care settings: common causative organisms and frequently prescribed antibiotics. Adv. Skin Wound Care. 2022;35(10):535–543. doi: 10.1097/01.ASW.0000855744.86686.ea

18. Robert A.Q., Comstock W., Zhang T., Morton J.T., Silva R., Tran A., Aksenov A., Nothias L.F., Wangpraseurt D., Melnik A.V., … Dorrestein P.C. Niche partitioning of a pathogenic microbiome driven by chemical gradients. Sci. Adv. 2018;4(9):eaau1908. doi: 10.1126/sciadv.aau1908

19. Walter J., Maldonado-Gómez M.X., Martínez I. To engraft or not to engraft: an ecological framework for gut microbiome modulation with live microbes. Curr. Opin Biotechnol. 2018;49:129–139. doi: 10.1016/j.copbio.2017.08.008

20. Tomic-Canic M., Burgess J.L., O’ Neill K.E., Strbo N., Pastar N. Skin microbiota and its interplay with wound healing. Am. J. Clin. Dermatol. 2020;21(Suppl 1):36–43. doi: 10.1007/s40257-020-00536-w

21. Harris-Tryon T.A., Grice E.A. Microbiota and maintenance of skin barrier function. Science. 2022;376(6596):940–945. doi: 10.1126/science.abo0693

22. Cheung G.Y.C., Bae J.S., Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence. 2021;12(1):547–569. doi: 10.1080/21505594.2021.1878688

23. Neopane P., Nepal H.P., Shrestha R., Uehara O., Abiko Y. In vitro biofilm formation by Staphylococcus aureus isolated from wounds of hospital-admitted patients and their association with antimicrobial resistance. Int. J. Gen. Med. 2018;11:25–32. doi: 10.2147/IJGM.S153268

24. Mlynarczyk-Bonikowska B., Kowalewski C., Krolak-Ulinska A., Wojciech M. Molecular mechanisms of drug resistance in Staphylococcus aureus. Int. J. Mol. Sci. 2022;23(15):8088. doi: 10.3390/ijms23158088

25. Rasmi A.H., Ahmed E.F., Darwish A.M.A., Gad G.F.M. Virulence genes distributed among Staphylococcus aureus causing wound infections and their correlation to antibiotic resistance. BMC Infect. Dis. 2022;22(1):652. doi: 10.1186/s12879-022-07624-8

26. Kovalenko T., Sirotnikov D., Shtanyuk E. General therapy of surgical wound infections caused by methicillin-resistant Staphylococcus aureus. The effect of β-lactam antibiotics on methicillin-resistant Staphylococcus aureus. Norvezhskiy zhurnal razvitiya mezhdunarodnoy nauki = Norwegian Journal of Development of the International Science. 2021;57-1:16–18. [In Russian].

27. Bitrus A.A., Peter O.M., Abbas M.A., Goni M.D. Staphylococcus aureus: A review of antimicrobial resistance mechanisms. Veterinary Sciences: Research and Reviews. 2018;4(2):43–54. doi: 10.17582/journal.vsrr/2018/4.2.43.54

28. Wang F.D., Wu P.F., Chen S.J. Distribution of virulence genes in bacteremic methicillin-resistant Staphylococcus aureus isolates from various sources. J. Microbiol. Immunol. Infect. 2019;52(3):426–432. doi: 10.1016/j.jmii.2019.01.001

29. Tikhomirov T.A., Dmitrenko O.A., Fedorova N.I., Tikhomirov A.A., Korotkiy N.G. Analysis of the prevalence of Staphylococcus aureus carrying leukotoxin genes and the “immune evasion cluster” (IEC) in patients with atopic dermatitis and healthy children. Pediatriya = Pediatrics. 2019;98(3):93–98. [In Russian]. doi: 10.24110/0031-403X-2019-98-3-93-98

30. Reygaert W.C. Antimicrobial resistance mechanisms of Staphylococcus aureus. In: Microbial pathogens and strategies for combating them: science, technology and education. Ed. A. Nendez-Vilas. V. 1. Formatex, 2013, Badajoz. P. 297–305.

31. Builova I.A., Savkina M.V., Sayapina L.V., Krivykh M.A., Obukhov Yu.I. Assessment of the current state of pharmaceutical development of anti-staphylococcal prophylactic drugs. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology. 2024;101(4):560–572. [In Russian]. doi: 10.36233/0372-9311-512

32. Giulieri S.G., Baines S.L., Guerillot R., Seemann T., Gonçalves da Silva A., Schultz M., Massey R.C., Holmes N.E., Stinear T.P., Howden B.P. Genomic exploration of sequential clinical isolates reveals a distinctive molecular signature of persistent Staphylococcus aureus bacteraemia. Genome Med. 2018;10(1):65. doi: 10.1186/s13073-018-0574-x

33. Tam K., Torres V.J. Staphylococcus aureus secreted toxins and extracellular enzymes. Microbiol. Spectr. 2019;7(2):10.1128/microbiolspec.gpp3-00392018

34. Uberoi A., McCready-Vangi A., Grice E.A. The wound microbiota: microbial mechanisms of impaired wound healing and infection. Nat. Rev. Microbiol. 2024;22(8):1–15. doi: 10.1038/s41579-024-01035-z

35. Howden B.P., Giulieri S.G., Lung W.F.T., Baines S.L., Sharkey L.K., Lee G.Y.H., Hachani A., Monk I.R., Stinear T.P. Staphylococcus aureus host interactions and adaptation. Nat. Rev. Microbiol. 2023;21(6):380–395. doi: 10.1038/s41579-02300852-y

36. Lee J., Zilm P.S., Kidd S.P. Novel research models for Staphylococcus aureus small colony variants (SCV) development: co-pathogenesis and growth rate. Front. Microbiol. 2020;11:321. doi: 10.3389/fmicb.2020.00321

37. Tan L., Li S.R., Jiang B., Hu X.M., Li S. Therapeutic targeting of the Staphylococcus aureus accessory gene regulator (agr) system. Front. Microbiol. 2018;9:55. doi: 10.3389/fmicb.2018.00055

38. Huyen K.B.L., Gonzalez C.D., Pascreau G., Bordeau V., Cattoir V., Liu W., Bouloc P., Felden B., Chabelskaya S. A small regulatory RNA alters Staphylococcus aureus virulence by titrating RNAIII activity. Nucleic. Acids. Res. 2021;49(18):10644–10656. doi: 10.1093/nar/gkab782

39. Suligoy C.M., Lattar S.M., Noto Llana M., Gonzales C.D., Alvarez L.P., Robinson D.A., Gomez M.I., Buzzola F.R., Sordelli D.O. Mutation of Agr is associated with the adaptation of Staphylococcus aureus to the host during chronic osteomyelitis. Front. Cell. Infect. Microbiol. 2018;8:18. doi: 10.3389/fcimb.2018.00018

40. Peng Q., Tang X., Dong W., Sun N., Yuan W. A review of biofilm formation of Staphylococcus aureus and its regulation mechanism. Antibiotics (Basel). 2022;12(1):12. doi: 10.3390/antibiotics12010012

41. Foster T.J. Surface proteins of Staphylococcus aureus. Microbiol. Spectr. 2019;7(4):10.1128/microbiolspec.gpp3-0046-2018.

42. Askarian F., Uchiyama S., Valderrama J.A., Ajayi C., Sollid J.U.E. , van Sorge N.M., Nizet V., van Strijp J.A.G., Johannessen M. Serine-aspartate repeat protein D increases Staphylococcus aureus virulence and survival in blood. Infect. Immun. 2017;85(1):e00559-16. doi: 10.1128/IAI.00559-16

43. Zhang Y., Wu M., Hang Y., Wang C., Yang Y., Pan W., Zang J., Zhang M., Zhang X. Staphylococcus aureus SdrE captures complement factor H’s C-terminus via a novel ‘close, dock, lock and latch’mechanism for complement evasion. Biochem. J. 2017;474(10):1619–1631. doi: 10.1042/BCJ20170085

44. Kalan L.R., Meisel J.S., Loesche M.A., Horwinski J., Soaita I., Chen I., Uberoy A., Gardner S.E. Grice E.A. Strain and species-level variation in the microbiome of diabetic wounds is associated with clinical outcomes and therapeutic efficacy. Cell Host Microbe. 2019;25(5):641–655.e5. doi: 10.1016/j.chom.2019.03.006

45. Harika K., Shenoy V.P., Narasimhaswamy N., Chawla K. Detection of biofilm production and its impact on antibiotic resistance profile of bacterial isolates from chronic wound infections. J. Glob. Infect. Dis. 2020;12(3):129–134. doi: 10.4103/jgid.jgid_150_19

46. Jacquet R., LaBauve A.E., Akoolo L., Patel S., Alqarzaee A A., WongFok T., Lung T., Poorey K., Stinear T.P., Thomas V.C., Meagher R.J., Parker D. Dual gene expression analysis identifies factors associated with Staphylococcus aureus virulence in diabetic mice. Infect. Immun. 2019;87(5):e00163-19. doi: 10.1128/IAI.00163-19

47. Thurlow L.R., Stephens A.C., Hurley K.E., Richardson A.R. Lack of nutritional immunity in diabetic skin infections promotes Staphylococcus aureus virulence. Sci. Adv. 2020;6(46):eabc5569. doi: 10.1126/sciadv.abc5569

48. Klopsfenstein N., Hibbs K., Blackman A., Serezani C.H. Prostaglandin E2 production is required for phagocyte CXCR2-mediated skin host defense in obese and hyperglycemic mice. Preprint at bioRxiv. 2022. doi: 10.1101/2022.10.02.510554

49. Qin S., Xiao W., Zhou C., Pu Q., Deng X., Lan L., Liang H., Song X., Wu M. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal. Transduct. Target Ther. 2022;7(1):199. doi: 10.1038/s41392-022-01056-1

50. Malone M., Bjarnsholt T., McBain A.J., James G.A., Stoodley P., Leaper D., Tachi M., Schultz G., Swanson T., Wolcott R.D. The prevalence of biofilms in chronic wounds: a systematic review and meta-analysis of published data. J. Wound Care. 2017;26(1):20–25. doi: 10.12968/jowc.2017.26.1.20

51. Moser C., Jensen P.Q., Thomsen K., Kolpen M., Rybtke M., Lauland A.S., Trqstrup H., Tolker-Nielsen T. Immune responses to Pseudomonas aeruginosa biofilm infections. Front. Immunol. 2021;12:625597. doi: 10.3389/fimmu.2021.625597

52. Wood T.E., Howard S.A., Förster A., Nolan L.M., Manoli E., Bullen N.P., Yau H.C.L., Hachani A., Hayward R.D., Whitney J.C., … Filloux A. The Pseudomonas aeruginosa T6SS delivers a periplasmic toxin that disrupts bacterial cell morphology. Cell. Rep. 2019;29(1):187–201.e7. doi: 10.1016/j.celrep.2019.08.094

53. Ivanov M.E., Fursova N.K., Potapov V.D. Pseudomonas aeruginosa efflux pump superfamily (review of literature). Klinicheskaya laboratornaya diagnostika = Russian Clinical Laboratory Diagnostics. 2022;67(1):53–58. [In Russian]. doi: 10.51620/0869-2084-2022-67-1-53-58

54. Subedi D., Vijay A.K., Willcox M. Overview of mechanisms of antibiotic resistance in Pseudomonas aeruginosa: an ocular perspective. Clin. Exp. Optom. 2018;101(2):162–171. doi: 10.1111/cxo.12621

55. Cooke A.C., Florez C., Dunshee E.B., Lieber A.D., Terry M.L., Light C.J., Schertzer J.W. Pseudomonas quinolone signal-induced outer membrane vesicles enhance biofilm dispersion in Pseudomonas aeruginosa. mSphere. 2020;5(6):e01109–20. doi: 10.1128/mSphere.01109-20

56. Gloag E.S., Marshall C.W., Snyder D., Lewin G.R., Harris J.S., Santos-Lopez A., Chaney S.B., Whiteley M., Cooper V.S., Wozniak D.J. Pseudomonas aeruginosa interstrain dynamics and selection of hyperbiofilm mutants during a chronic infection. MBio. 2019;10(4):e01698–19. doi: 10.1128/mBio.01698-19

57. Morgan S.J., Lippman S.I., Bautista G.E., Harrison J.J., Harding C.L., Gallagher L.A., Cheng A.C., Siehnel R., Ravishankar S., Usui M.L., … Singh P.K. Bacterial fitness in chronic wounds appears to be mediated by the capacity for high-density growth, not virulence or biofilm functions. PLoS Pathogens. 2019;15(3):e1007511. doi: 10.1371/journal.ppat.1007511

58. Everett J., Turner K., Cai Q., Gordon V., Whiteley M., Rumbaugh K. Arginine is a critical substrate for the pathogenesis of Pseudomonas aeruginosa in burn wound infections. MBio. 2017;8(2): 02160-16. doi: 10.1128/mBio.02160-16

59. Karaulov A.V., Afanasyev S.S., Aleshkin V.A., Bondarenko N.L., Voropaeva E.A., Afanasyev M.S., Nesvizhsky Yu.V., Aleshkin A.V., Borisova A.Yu., Ovsyannikova E.G., … Makhmudov R.S. Mechanisms of virulence acquisition of opportunistic microorganisms and nosocomial strains pool formation in mucosal microbiocenoses of open cavities of the body. Astrakhanskiy meditsinskiy zhurnal = Astrakhan Medical Journal. 2018;13(2):17–31. [In Russian]. doi: 10.17021/2018.13.2.17.31

60. Burova L.A., Totolyan A.A. Major pathogenicity factors of Streptococcus pyogenes. Infektsiya i immunitet = Russian Journal of Infection and Immunity. 2022;12(1):33–50. [In Russian]. doi: 10.15789/2220-7619-MPF-1723

61. Leitão J.H. Microbial virulence factors. Int. J. Mol. Sci. 2020;21(15):5320. doi: 10.3390/ijms21155320

62. Trizna E.Y., Yarullina M.N., Baidamshina D.R., Mironova A.V., Akhatova F.S., Rozhina E.V., Fakhrullin R.F., Khabibrakhmanova A.M., Kurbangalieva A.R., Bogachev M.I., Kayumov A.R. Bidirectional alterations in antibiotics susceptibility in Staphylococcus aureus – Pseudomonas aeruginosa dual-species biofilm. Sci. Rep. 2020;10(1):14849. doi: 10.1038/s41598020-71834-w

63. Landa G., Clarhaut J., Buyck J., Mendoza G., Arruebo M., Tewes F. Impact of mixed Staphylococcus aureus – Pseudomonas aeruginosa biofilm on susceptibility to antimicrobial treatments in a 3D in vitro model. Sci. Rep. 2024;14(1):27877. doi: 10.1038/s41598-02479573-y

64. Radlinski L., Rowe S.E., Kartchner L.B., Maile R., Cairns B.A., Vitko N.P, Gode C.J., Lachiewicz A.M., Lachiewicz A.M., Wolfgang M.C., Conlon B.P. Pseudomonas aeruginosa exoproducts determine antibiotic efficacy against Staphylococcus aureus. PLoS Biol. 2017;15(11):e2003981. doi: 10.1371/journal.pbio.2003981

65. Pouget C., Dunyach-Remy C., Bernardi T., Provot C., Tasse J., Sotto A., Lavigne J.P. A relevant wound-like in vitro media to study bacterial cooperation and biofilm in chronic wounds. Front. Microbiol. 2022;13:705479. doi: 10.3389/fmicb.2022.705479

66. Alves P.M., Al-Badi E., Withycombe C., Jones P.M., Purdy K.J., Maddocks S.E., Interaction between Staphylococcus aureus and Pseudomonas aeruginosa is beneficial for colonisation and pathogenicity in a mixed biofilm. Pathog. Dis. 2018;76(1). doi: 10.1093/femspd/fty003

67. Pouget C., Dunyach-Remy C, Magnan C., Pantel A., Sotto A., Lavigne J.P. Polymicrobial biofilm organization of Staphylococcus aureus and Pseudomonas aeruginosa in a chronic wound environment. Int. J. Mol. Sci. 2022;23(18):10761. doi: 10.3390/ijms231810761

68. Anju V.T., Busi S., Imchen M., Kumavath R., Mohan M.S., Salim S.A., Subhaswaraj P., Dyavaiah M. Polymicrobial infections and biofilms: clinical significance and eradication strategies. Antibiotics (Basel). 2022;11(12):1731. doi: 10.3390/antibiotics11121731

69. Cavallo I., Sivori F., Mastrofrancesco A., Abril E., Pontone M., di Domenico E.G., Pimpinelli F. Bacterial biofilm in chronic wounds and possible therapeutic approaches. Biology (Basel). 2024;13(2):109. doi: 10.3390/biology13020109

70. Mulani M.S., Kamble E.E., Kumkar S.N., Tawre M.S., Pardesi K.R. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front. Microbiol. 2019;10:539. doi: 10.3389/fmicb.2019.00539

71. Coronado-Álvarez N.M., Parra D., Parra-Ruiz J. Clinical efficacy of fosfomycin combinations against a variety of gram-positive cocci. Enferm. Infecc. Microbiol. Clin. (Engl. Ed). 2019;37(1):4–10. doi: 10.1016/j.eimc.2018.05.009

72. Rezzoagli C., Archetti M., Mignot I., Baumgartner M., Kümmerli R. Combining antibiotics with antivirulence compounds can have synergistic effects and reverse selection for antibiotic resistance in Pseudomonas aeruginosa. PLoS Biol. 2020;18(8):e3000805. doi: 10.1371/journal.pbio.3000805

73. Lerdsittikul V., Apiratwarrasakul S., Atithep T., Withatanung P., Indrawattana N., Pumirat P., Chaiwattanarungruengpaisan S., Thongdee M. Isolation and characterisation of a novel Silviavirus bacteriophage promising antimicrobial agent against methicillinresistant Staphylococcus aureus infections. Sci. Rep. 2024;14(1):9251. doi: 10.1038/s41598-024-59903-w

74. Shafigh K.F., Hesari F.S., Aminifazl M.S., Skurnik M., Gholadze S., Zarrini G. Design of phagecocktail–containing hydrogel for the treatment of Pseudomonas aeruginosa – infected wounds. Viruses. 2023;15(3):803. doi: 10.3390/v15030803

75. Pfalzgraff A., Brandenburg K., Weindl G. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front. Pharmacol. 2018;9:281. doi: 10.3389/fphar.2018.00281

76. Li C., Zhu C., Ren B., Yin X., Shim S.H., Gao Y., Zhu J., Zhao P., Liu C., Yu R., Xia X., Zhang L. Two optimized antimicrobial peptides with therapeutic potential for clinical antibiotic-resistant Staphylococcus aureus. Eur. J. Med. Chem. 2019;183:111686. doi: 10.1016/j.ejmech.2019.111686

77. Beaudoin T., Stone T.A., Glibowicka M., Adams C., Yau Y., Ahmadi S., Bear C.E., Grasemann H., Waters V., Deber C.M. Activity of a novel antimicrobial peptide against Pseudomonas aeruginosa biofilms. Sci. Rep. 2018;8(1):14728. doi: 10.1038/s41598-01833016-7


Review

Views: 41

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)