Methods for predicting the risks of developing cardiovascular diseases
https://doi.org/10.18699/SSMJ20250506
Abstract
Forecasting the risks of developing cardiovascular diseases (CVD) is one of the priority tasks of modern preventive medicine. One of the promising areas is the use of machine learning methods and mathematical modeling, which allows considering the combined impact of diverse risk factors. Aim of the study was to summarize and analyze research data devoted to methods for predicting the risk of developing CVD.
Material and methods. The information search was carried out in the PubMed, eLibrary, and CyberLeninka databases for the period from 1961 to 2025. A total of 820 sources were analyzed, of which 68 were included in the review.
Results and discussion. The review provides an analysis of methods for predicting the development of chronic non-communicable diseases (CVD, prognosis of the ten-year risk of developing CVD and death from them). The development of this area in foreign and domestic medicine is shown in chronological order and the most common methods for predicting the development of circulatory system diseases are presented. The article provides argumentation for the active use of artificial intelligence methods in the field of preventive medicine, which allow processing big data and taking into account various combinations of risk factors.
Conclusions. To ensure high accuracy of prognostication of CVD, it is important to consider a wide range of risk factors (ethnic, socioeconomic, cultural, behavioral, medical and biological, production process factors) that operate within the framework of a separately studied group.
About the Authors
V. N. DolichRussian Federation
Vladimir N. Dolich
410022, Saratov, Zarechnaya st., 1a, bld. 1
N. E. Komleva
Russian Federation
Nataliya E. Komleva, doctor of medical sciences
410022, Saratov, Zarechnaya st., 1a, bld. 1
410012, Saratov, Bol’shaya Kazach’ya st., 112
S. I. Mazilov
Russian Federation
Svyatoslav I. Mazilov, candidate of biological sciences
410022, Saratov, Zarechnaya st., 1a, bld. 1
I. V. Zaikina
Russian Federation
Inna V. Zaikina, candidate of medical sciences
410022, Saratov, Zarechnaya st., 1a, bld. 1
410012, Saratov, Verkhniy Rynok st., 10
N. О. Osipov
Russian Federation
Nikita O. Osiporv
410022, Saratov, Zarechnaya st., 1a, bld. 1
References
1. Virani S.S., Alonso A., Aparicio H.J., Benjamin E.J., Bittencourt M.S., Callaway C.W., Carson A.P., Chamberlain A.M., Cheng S., Delling F.N., … American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2021 Update: A report from the American Heart Association. Circulation. 2021;143(8):e254–e743. doi: 10.1161/CIR.0000000000000950
2. Global Burden of Disease Collaborative Network, Global Burden of Disease Study 2021 (GBD 2021) Results (2024, Institute for Health Metrics and Evaluation – IHME) (World Health Оrganization. Noncommunicable diseases. Available at: clck.ru/3P9MTT
3. Xu C., Zhang P., Cao Z. Cardiovascular health and healthy longevity in people with and without cardiometabolic disease: A prospective cohort study. EClinicalMedicine. 2022;45:101329. doi: 10.1016/j.eclinm.2022.101329
4. Khan S.S., Coresh J., Pencina M.J., Ndumele C.E., Rangaswami J., Chow S.L., Palaniappan L.P., Sperling L.S., Virani S.S., Ho J.E., … American Heart Association. Novel prediction equations for absolute risk assessment of total cardiovascular disease incorporating cardiovascular-kidney-metabolic health: A scientific statement from the American Heart Association. Circulation. 2023;148(24):1982–2004. doi: 10.1161/CIR.0000000000001191
5. Aryal B., Price N.L., Suarez Y., Fernández-Hernando C. ANGPTL4 in metabolic and cardiovascular disease. Trends Mol. Med. 2019;25(8):723–734. doi: 10.1016/j.molmed.2019.05.010
6. Gazimova V.G., Shastin A.S., Dubenko S.E., Kurbanova N.A., Mazhaeva T.V., Tsepilova T.M., Ruzakov V.O. Experience of using the results of periodic medical examinations to assess the risk of developing diseases of the circulatory system. Profilakticheskaya meditsina = The Russian Journal of Preventive Medicine and Public Health. 2022;25(5):61–66. [In Russian]. doi: 10.17116/profmed20222505161
7. Bukhtiyarov I.V. Current state and main directions of preservation and strengthening of health of the working population of Russia. Meditsina truda i promyshlennaya ekologiya = Russian Journal of Occupational Health and Industrial Ecology. 2019;(9):527–532. [In Russian]. doi: 10.31089/1026-9428-2019-59-9-527-532
8. Shchelkova O.Yu., Iakovleva M.V., Eremina D.A., Shindrikov R.Yu., Kruglova N.E., Gorbunov I.A., Demchenko E.A. On the development of a systemic (biopsychosocial) prediction model for cardiovascular disease. Part I. Obozreniye psikhiatrii i meditsinskoy psikhologii imeni V.M. Bekhtereva = V.M. Bekhterev Review of Psychiatry and Medical Psychology. 2023;57(2):62–74. [In Russian]. doi: 10.31363/2313-7053-2023-731
9. Yu Y., Sun Y., Yu Y., Wang Y., Chen C., Tan X., Lu Y., Wang N. Life’s essential 8 and risk of non-communicable chronic diseases: Outcome-wide analyses. Chin. Med. J. (Engl.). 2024;137(13):1553–1562. doi: 10.1097/CM9.0000000000002830
10. Feigl A.B., Goryakin Y., Devaux M., Lerouge A., Vuik S., Cecchini M. The short-term effect of BMI, alcohol use, and related chronic conditions on labour market outcomes: a time-lag panel analysis utilizing european SHARE dataset. Plos One. 2019;14(3):e0211940. doi: 10.1371/journal.pone.0211940
11. Kannel W.B., Dawber T.R., Kagan A. Revotskie N., Stokes J. 3rd. Factors of risk in the development of coronary heart disease – six year follow-up experience. The Framingham Study. Ann. Intern. Med. 1961;55:33–50. doi: 10.7326/0003-4819-55-1-33
12. Damen J.A., Hooft L., Schuit E., Debray T.P., Collins G.S., Tzoulaki I., Lassale C.M., Siontis G.C., Chiocchia V., Roberts C., … Moons K.G. Prediction models for cardiovascular disease risk in the general population: systematic review. BMJ. 2016;353:i2416. doi: 10.1136/bmj.i2416
13. Conroy R.M., Pyörälä K., Fitzgerald A.P., Sans S., Menotti A., De Backer G., De Bacquer D., Ducimetière P., Jousilahti P., Keil U., … SCORE project group. Estimation of ten-year risk of fatal cardiovascular disease inEurope: the SCORE project. Eur. Heart. J. 2003;24(11):987–1003. doi: 10.1016/s0195-668x(03)00114-3
14. The World Health Organization MONICA Project (monitoring trends and determinants in cardiovascular disease): a major international collaboration. WHO MONICA Project Principal Investigators. J. Clin. Epidemiol. 1988;41(2):105–114. doi: 10.1016/0895-4356(88)90084-4
15. Puska P., Vartiainen E., Laatikainen T., Jousilahti P., Paavola M. North Karelia Project: from North Karelia to a national scale project. Helsinki: Helsinki University Press, 2011. 291 p. [In Russian].
16. Anderson T.S., Wilson L.M., Sussman J.B. Atherosclerotic cardiovascular disease risk estimates using the predicting risk of cardiovascular disease events equations. JAMA Intern. Med. 2024;184(8):963–970. doi: 10.1001/jamainternmed.2024.1302
17. Medina-Inojosa J.R., Somers V.K., Garcia M., Thomas R.J., Allison T., Chaudry R., WoodWentz C.M., Bailey K.R., Mulvagh S.L., Lopez-Jimenez F. Performance of the ACC/AHA pooled cohort cardiovascular risk equations in clinical practice. J. Am. Coll. Cardiol. 2023;82(15):1499–1508. doi: 10.1016/j.jacc.2023.07.018
18. Ramos R., Solanas P., Cordón F., Rohlfs I., Elosua R., Sala J., Masiá R., Faixedas M.T., Marrugat J. Comparación de la función de Framingham original y la calibrada del REGICOR en la predicción del riesgo coronario poblacional. Med. Clin. (Barc.). 2003;121(14):521–526. doi: 10.1016/s0025-7753(03)74007-x
19. Zhiting G., Jiaying T., Haiying H., Yuping Z., Qunfei Y., Jingfen J. Cardiovascular disease risk prediction models in the Chinese population – a systematic review and meta-analysis. BMC Public Health. 2022;22(1):1608. doi: 10.1186/s12889-022-13995-z
20. Shalnova S.A., Kalinina A.M., Deev A.D., Pustelenin A.V. Russian expert system ORISKON – assessment of the major non-communicable disease risk. Kardiovaskulyarnaya terapiya i profilaktika = Cardiovascular Therapy and Prevention. 2013;12(4):51–55. [In Russian]. doi: 10.15829/1728-8800-2013-4-51-55
21. Averbuch T., Sullivan K., Sauer A., Mamas M.A., Voors A.A., Gale C.P., Metra M., Ravindra N., Van Spall H.G.C. Applications of artificial intelligence and machine learning in heart failure. Eur. Heart J. Digit. Health. 2022;3(2):311–322. doi: 10.1093/ehjdh/ztac025
22. Yoon M., Park J.J., Hur T., Hua C.H., Hussain M., Lee S., Choi D.J. Application and potential of artificial intelligence in heart failure: past, present, and future. Int. J Heart Fail. 2023;6(1):11–19. doi: 10.36628/ijhf.2023.0050
23. Kobyakova O.S., Starovoitova E.A., Tolmachev I.V., Brazovsky K.S., Deev I.A., Kulikov E.S., Almikeeva A.A., Fayzulina N.M., Balaganskaya M.A. Contribution of combined risk factors into development of chronic non-communicable diseases. Sotsial’nyye aspekty zdorov’ya naseleniya = Social Aspects of Population Health. 2020;66(5):1. [In Russian]. doi: 10.21045/2071-5021-2020-66-5-1
24. Seliverstov P.V., Grinevich V.B., Shapovalov V.V., Kryukov E.V. Improving the effectiveness of screening for chronic noncommunicable diseases using artificial intelligence-based technologies. Lechashchiy vrach = Therapist. 2024;(4):97–104. [In Russian]. doi: 10.51793/OS.2024.27.4.014
25. Cherepanov F.M., Yasnitskiy L.N. Neuro-expert system for diagnostics and prediction of cardiovascular disease risks. Patent 2017662410 RF; published 07.11.2017. [In Russian].
26. Kontorovich E.P., Drobotya N.V., Gorblyanskij Yu.Yu., Yakovleva N.V., Ponamareva O.P., Vlasenko E.A. Program for predicting the risk of developing cardiovascular diseases in electric locomotive construction workers. Patent 2018660469 RF; published 23.08.2018. [In Russian].
27. Serebryakova V.N., Kaveshnikov V.S. Assessment of population risk of cardiovascular health parameters in mentally ill individuals. Patent 2017618003 RF; published 20.07.2019. [In Russian].
28. Belov D.V., Bejfus A.V., Fokin A.A., Garbuzenko D.V., Lukin O.P. Calculator of the risk of abdominal complications after coronary artery bypass grafting under artificial circulation. Patent 2018618055 RF; published 09.07.2018. [In Russian].
29. Serova Yu.S., Fettsova L.N., Kolosova A.G., Zolkin A.L., Kukhtalev V.V., Porozhnikov P.A., Yatmanov A.N. Program for predicting the development of stress-associated somatic diseases of the cardiac profile in military personnel. Patent 2025616181 RF; published 13.03.2025. [In Russian].
30. Reshetnikova Yu.S., Kosachev D.V., Katkova A.L., Brynza N.S., Kurmangulov A.A., Potapov A.P., Slashcheva D.M. Model of an intelligent system for assessing the risk of cardiovascular diseases in workers in the fuel and energy complex. Patent 2024691078 RF; published 19.12.2024. [In Russian].
31. Dyuzheva E.V., Ponomaryov S.B., Gorokhov M.M., Sen’ko O.V., Kuznetsova A.V. A program for personalized short-term forecasting of the degree of risk of death from diseases of the circulatory system in the “Hospital” branch of the medical and sanitary unit of the Federal Penitentiary Service of Russia. Patent 2018616954 RF; published 09.06.2018. [In Russian].
32. Novitskiy R.E. A program for predicting the individual probability of developing cardiovascular diseases based on machine learning WML.CVD.FRS. Patent 2020660298 RF; published 01.09.2020. [In Russian].
33. Artyomenko M.V., Dobrovol’skiy I.I. Smart expert system for thromboembolism prediction. Patent 2020614110 RF; published 26.03.2020. [In Russian].
34. Gallacher J.E., Yarnell J.W., Butland B.K. Type A behaviour and prevalent heart disease in the Caerphilly study: increase in risk or symptom reporting? J. Epidemiol. Community Health. 1988;42(3):226–231. doi: 10.1136/jech.42.3.226
35. Eichler K., Puhan M.A., Steurer J., Bachmann L.M. Prediction of first coronary events with the Framingham score: a systematic review. Am. Heart J. 2007;153(5):722–731: doi: 10.1016/j.ahj.2007.02.027
36. Chantarat T., McGovern P.M., Enns E.A., Hardeman R.R. Predicting the onset of hypertension for workers: does including work characteristics improve risk predictive accuracy? J. Hum. Hypertens. 2023;37(3):220–226. doi: 10.1038/s41371-022-00666-0
37. Lloyd-Jones D.M., Lewis C.E., Schreiner P.J., Shikany J.M., Sidney S., Reis J.P. The Coronary Artery Risk Development In Young Adults (CARDIA) study: JACC Focus Seminar 8/8. J. Am. Coll. Cardiol. 2021;78(3):260–277. doi: 10.1016/j.jacc.2021.05.022
38. Wilson P.W., D’Agostino R.B., Levy D., Belanger A.M., Silbershatz H., Kannel W.B. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97(18):1837–1847. doi: 10.1161/01.cir.97.18.1837
39. D’Agostino R.B., Vasan R.S., Pencina M.J., Wolf P.A., Cobain M., Massaro J.M., Kannel W.B. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation. 2008;117(6):743–753. doi: 10.1161/CIRCULATIONAHA.107.699579
40. Kurogi K., Yura S., Moriyama K., Tsuda E., Yoshida N., Ito M. Assessment of the application of atherosclerotic disease risk scores in the workplace. Sangyo Eiseigaku Zasshi. 2025;67(1):9–25. doi: 10.1539/sangyoeisei.2024-022-B
41. Yang X., Li J., Hu D., Chen J., Li Y., Huang J., Liu X., Liu F., Cao J., Shen C., … Gu D. Predicting the 10-year risks of atherosclerotic cardiovascular disease in chinese population: The China-PAR Project (Prediction for ASCVD Risk in China). Circulation. 2016;134(19):1430–1440. doi: 10.1161/CIRCULATIONAHA.116.022367
42. Denisov E.I., Chesalin P.V. Occupationally related morbidity and its evidence. Meditsina truda i promyshlennaya ekologiya = Russian Journal of Occupational Health and Industrial Ecology. 2007;(10):1–9. [In Russian].
43. Kuznetsova Z.M., Polzik E.V., Danilenko I.I. Forecasting the development of cardiovascular diseases in employees engaged in managerial work. Gigiena i sanitariya = Hygiene and Sanitation. 1993;(1):23–25.
44. Shastin A.S., Gazimova V.G., Guselnikov S.R., Stamikov N.I., Bakhtereva E.V. Morbidity among metallurgists by the results of periodic health checkups and the analysis of temporary disability. Meditsina truda i ekologiya cheloveka = Occupational Medicine and Human Ecology. 2022;(4):46–64. [In Russian]. doi: 10.24411/2411-3794-2022-10404
45. Meneton P., Lemogne C., Herquelot E., Bonenfant S., Czernichow S., Ménard J., Goldberg M., Zins M. Primary cardiovascular disease risk factors predicted by poor working conditions in the GAZEL cohort. Am. J. Epidemiol. 2017;186(7):815–823. doi: 10.1093/aje/kwx152
46. Perng W., Aris I.M., Slopen N., Younoszai N., Swanson V., Mueller N.T., Sauder K.A., Dabelea D. Application of life’s essential 8 to assess cardiovascular health during early childhood. Ann. Epidemiol. 2023;80:16–24. doi: 10.1016/j.annepidem.2023.02.004
47. Filimonov E.S., Korotenko O.Yu. Atherosclerosis prediction system based on the identification of the most significant risk factors in workers of the main professions of the coal industry in the South of Kuzbass. Meditsina v Kuzbasse = Medicine in Kuzbass. 2022;21(3):80–85. [In Russian]. doi: 10.24412/2687-0053-2022-3-80-85
48. Balanova Yu.A., Imaeva A.E., Kontsevaya A.V., Shalnova S.A., Deev A.D., Kapustina A.V., Evstifeeva S.E., Muromtseva G.A. Epidemiological monitoring ofrisk factors for chronic noncommunicable diseases in practical healthcare at the regional level. Methodological recommendations. Moscow, 2016. 111 p. [In Russian]. doi: 10.17116/profmed2016metod01
49. Vlasova E.M., Polevaya E.A., Poroshina M.M., Tiunova M.I., Alekseev V.B. Features of risk factors of development of the production caused pathology at workers of metallurgical production. Meditsina truda i promyshlennaya ekologiya = Russian Journal of Occupational Health and Industrial Ecology. 2019;(11):926–930. [In Russian]. doi: 10.31089/1026-9428-2019-59-11-926-930
50. Ustinova O.Yu., Vlasova E.M., Nosov A.E., Kostarev V.G., Lebedeva T.M. Assessment of cardiovascular pathology risk in miners employed at deep chrome mines. Analiz riska zdorov’yu = Health Risk Analysis. 2018;(3): 94–103. [In Russian]. doi: 10.21668/health.risk/2018.3.10
51. Ramsay S.E., Morris R.W., Whincup P.H., Papacosta A.O., Thomas M.C., Wannamethee S.G. Prediction of coronary heart disease risk by Framingham and SCORE risk assessments varies by socioeconomic position: results from a study in British men. Eur. J. Cardiovasc. Prev. Rehabil. 2011;18(2):186–193. doi: 10.1177/1741826710389394
52. WHO CVD Risk Chart Working Group. World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. Lancet Glob. Health. 2019;7(10):e1332–e1345. doi: 10.1016/S2214-109X(19)30318-3
53. Gopal D.P., Usher-Smith J.A. Cardiovascular risk models for South Asian populations: a systematic review. Int. J. Public Health. 2016;61(5):525–534. doi: 10.1007/s00038-015-0733-4
54. Saei Ghare Naz M., Sheidaei A., Aflatounian A., Azizi F., Ramezani Tehrani F. Does adding adverse pregnancy outcomes improve the framingham cardiovascular risk score in women? Data from the Tehran Lipid and Glucose Study. J. Am. Heart Assoc. 2022;11(2):e022349. doi: 10.1161/JAHA.121.022349
55. Zwaard A.V., Geraedts A., Norder G., Heymans M.W., Roelen C.A.M. Framingham score and work-related variables for predicting cardiovascular disease in the working population. Eur. J. Public Health. 2019;29(5):832–837. doi: 10.1093/eurpub/ckz008
56. Grinshtein Yu.I., Shabalin V.V., Ruf R.R., Shalnova S.A., Drapkina O.M. Prevalence of a combination of hypertension and dyslipidemia among the adult population of a large East Siberian region. Kardiovaskulyarnaya terapiya i profilaktika = Cardiovascular Therapy and Prevention. 2021;20(4):2865. [In Russian]. doi: 10.15829/1728-8800-2021-2865
57. Freisling H., Viallon V., Lennon H., Bagnardi V., Ricci C., Butterworth A.S., Sweeting M., Muller D., Romieu I., Bazelle P., Ferrari P. Lifestyle factors and risk of multimorbidity of cancer and cardiometabolic diseases: a multinational cohort study. BMC Med. 2020;18(1):5. doi: 10.1186/s12916-019-1474-7
58. Yang S., Han Y., Yu C., Guo Y., Pang Y., Sun D., Pei P., Yang L., Chen Y., Du H., … China Kadoorie Biobank Collaborative Group. Development of a model to predict 10-year risk of ischemic and hemorrhagic stroke and ischemic heart disease using the China Kadoorie Biobank. Neurology. 2022;98(23):e2307–e2317. doi: 10.1212/WNL.0000000000200139
59. Chulkov V.S., Lenets E.A., Gavrilova E.S., Minina E.E., Pozdeeva V.A., Ukolov N.D. Gender differences in cardiometabolic risks among young adults. Kompleksnyye problemy serdechno-sosudistykh zabolevaniy = Complex Issues of Cardiovascular Diseases. 2021;10(S2):94–98. [In Russian]. doi: 10.17802/2306-1278-2021-10-2S-94-98
60. Shapovalova E.B., Maksimov S.A., Artamonova G.V. Gender differences of cardiovascular risk. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2019; 24(4):99–104. [In Russian]. doi: 10.15829/1560-4071-2019-4-99-104
61. Erina A.M., Usoltsev D.A., Boyarinova M.A., Kolesova E.P., Moguchaya E.V., Tolkunova K.M., Alieva A.S., Rotar O.P., Artemov N.N., Shalnova S.A., … Shlyakhto E.V. Appointment of lipid-lowering therapy in the Russian population: comparison of SCORE and SCORE2 (according to the ESSE-RF study). Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2022;27(5):5006. [In Russian]. doi: 10.15829/1560-4071-2022-5006
62. Bezrukova G.A., Novikova T.A. The use of modern digital technologies in predictive analysis of risk factors for premature death due to socially significant non-communicable diseases (literature review). Zdravookhraneniye Rossiyskoy Federatsii = Health Care of the Russian Federation. 2022;66(6):484–490. [In Russian]. doi: 10.47470/0044-197X-2022-66-6-484-490
63. Shalnova S.A., Drapkina O.M., Kontsevaya A.V., Yarovaya E.B., Kutsenko V.A., Metelskaya V.A., Kapustina A.V., Balanova Yu.A., Litinskaya O.A., Pokrovskaya M.S. A pilot project to study troponin I in a representative sample of the region from the ESSE-RF study: distribution among population and associations with risk factors. Kardiovaskulyarnaya terapiya i profilaktika = Cardiovascular Therapy and Prevention. 2021;20(4):32–41. [In Russian]. doi: 10.15829/1728-8800-2021-2940
64. Bershtein L.L., Golovina A.E., Katamadze N.O., Bondareva E.V., Saiganov S.A. Evaluating of the accurasy of cardiovascular events predicting using SCORE scale and ultrasound visualization of atherosclerotic plaque in patients of multi-disciplinary hospital in Saint-Petersburg: medium-term monitoring data. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2019;24(5):20–25. [In Russian]. doi: 10.15829/1560-4071-2019-5-20-25
65. Binuya M.A.E., Engelhardt E.G., Schats W., Schmidt M.K., Steyerberg E.W. Methodological guidance for the evaluation and updating of clinical prediction models: a systematic review. BMC Med Res Methodol. 2022; 22:316. doi: 10.1186/s12874-022-01801-8
66. Zaitseva N.V., Onishchenko G.G., May I.V., Shur P.Z. Developing the methodology for health risk assessment within public management of sanitary-epidemiological welfare of the population. Analiz riska zdorov’yu = Health Risk Analysis. 2022;(3):4–20. [In Russian]. doi: 10.21668/health.risk/2022.3.01
67. Lebedeva-Nesevrya N.A., Kiryanov D.A., Barg A.O. Assessment of a combined impact of social and occupational risk factors on health of powder metallurgy workers according to data of epidemiological studies. Zdorov’ye naseleniya i sreda obitaniya = Public Health and Life Environment. 2010;(11): 44–46. [In Russian].
68. Onishchenko G.G. Development of the risk analysis methodology given the current safety challenges for public health in the Russian Federation: vital issues and prospects. Analiz riska zdorov’yu = Health Risk Analysis. 2023;(4):4–18. [In Russian]. doi: 10.21668/health.risk/2023.4.01.






























