Exploring glutamate-gated chloride channels in cancer cells: A narrative review on a hypothetical mechanism underpinning the anticancer effects of antiparasitic drugs
https://doi.org/10.18699/SSMJ20250401
Abstract
Chloride channels play a fundamental role in cellular homeostasis, influencing ion balance, pH regulation, and apoptotic signaling. While glutamate-gated chloride channels (GluCl) are traditionally restricted to invertebrates, recent evidence suggests that functionally analogous chloride conductances may exist in cancer cells, contributing to tumor survival and metabolic adaptation. Notably, chloride intracellular channels (CLICs), particularly CLIC6, have emerged as strong candidates for chloride-mediated oncogenic signaling. CLIC6 is overexpressed in multiple malignancies, including breast, ovarian, lung, gastric, and pancreatic cancers, and is known to interact with dopamine D2-like receptors. Patchclamp studies have confirmed its chloride-selective conductance, localization to the plasma membrane, and regulation by pH and redox potential. The unexpected anticancer effects of antiparasitic drugs such as ivermectin, which targets GluCl channels in parasites, suggest a possible chloride-mediated mechanism of cytotoxicity in tumors. Ivermectininduced chloride influx may disrupt ionic equilibrium, hyperpolarize the plasma membrane, and trigger mitochondrial dysfunction, leading to oxidative stress, cytochrome c release, and caspase activation. This ionic disruption may also interfere with key oncogenic pathways, including PI3K/AKT, Wnt/β-catenin, and NF-κB, impairing tumor proliferation and immune evasion. Given the structural and functional parallels between GluCl channels and CLIC6, ivermectin’s efficacy may be partially mediated through chloride channel dysregulation. This review synthesizes molecular, electrophysiological, and pharmacological evidence supporting the existence of GluCl-like chloride conductance in cancer cells and its therapeutic implications. Further research is needed to characterize chloride ion dynamics in tumors, validate CLIC6 as a potential GluCl channel analog, and explore chloride channel-targeting strategies for cancer treatment, opening new frontiers in oncology.
About the Authors
M. M. AklEgypt
35516, Mansoura, Elgomhouria st., 25
A. Ahmed
Saudi Arabia
13524, Riyadh, King Fahd Rd., 4499
References
1. Selezneva A., Gibb A.J., Willis D. The contribution of ion channels to shaping macrophage behaviour. Front. Pharmacol. 2022;13:970234. doi: 10.3389/fphar.2022.970234
2. Altamura C., Gavazzo P., Pusch M., Desaphy J.F. Ion channel involvement in tumor drug resistance. J. Pers. Med. 2022;12(2):210. doi: 10.3390/jpm12020210
3. Chen Z., Han F., Du Y., Shi H., Zhou W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2023;8(1):70. doi: 10.1038/s41392-023-01332-8
4. Arcangeli A., Becchetti A. New trends in cancer therapy: targeting ion channels and transporters. Pharmaceuticals. 2010;3(4):1202–1224. doi: 10.3390/ph3041202
5. Tang M., Hu X., Wang Y., Yao X., Zhang W., Yu C., Cheng F., Li J., Fang Q. Ivermectin, a potential anticancer drug derived from an antiparasitic drug. Pharmacol. Res. 2021;163:105207. doi: 10.1016/j.phrs.2020.105207
6. Wolstenholme A.J. Glutamate-gated chloride channels. J. Biol. Chem. 2012;287(48):40232–40238. doi: 10.1074/jbc.R112.406280
7. Wolstenholme A.J. Ion channels and receptors as targets for the control of parasitic nematodes. Int. J. Parasitol. Drugs Drug. Resist. 2011;1(1):2–13. doi: 10.1016/j.ijpddr.2011.09.003
8. Dratkiewicz E., Simiczyjew A., Mazurkiewicz J., Ziętek M., Matkowski R., Nowak D. Hypoxia and extracellular acidification as drivers of melanoma progression and drug resistance. Cells. 2021;10(4):862. doi: 10.3390/cells10040862
9. Chu X., Tian W., Ning J, Xiao G., Zhou Y., Wang Z., Zhai Z., Tanzhu G., Yang .J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct. Target. Ther. 2024;9(1):170. doi: 10.1038/s41392-024-01851-y
10. Jiang M., Fang H., Tian H. Metabolism of cancer cells and immune cells in the initiation, progression, and metastasis of cancer. Theranostics. 2025;15(1):155–188. doi: 10.7150/thno.103376
11. Basheeruddin M., Qausain S. Hypoxia-inducible factor 1-alpha (HIF-1α): an essential regulator in cellular metabolic control. Cureus. 2024;16(7):e63852. doi: 10.7759/cureus.63852
12. Bobulescu I.A., Moe O.W. Na+ /H+ exchangers in renal regulation of acid-base balance. Semin. Nephrol. 2006;26(5):334–344. doi: 10.1016/j.semnephrol.2006.07.001
13. Kato Y., Ozawa S., Miyamoto C., Maehata Y., Suzuki A., Maeda T., Baba Y. Acidic extracellular microenvironment and cancer. Cancer Cell. Int. 2013;13(1):89. doi: 10.1186/1475-2867-13-89
14. Wang X., Khalil R.A. Matrix metalloproteinases, vascular remodeling, and vascular disease. Adv. Pharmacol. 2018;81:241–330. doi: 10.1016/bs.apha.2017.08.002
15. Belisario D.C., Kopecka J., Pasino M., Akman M., de Smaele E., Donadelli M., Riganti C. Hypoxia dictates metabolic rewiring of tumors: implications for chemoresistance. Cells. 2020;9(12):2598. doi: 10.3390/cells9122598
16. Becker H.M. Carbonic anhydrase IX and acid transport in cancer. Br. J. Cancer. 2020;122(2):157– 167. doi: 10.1038/s41416-019-0642-z
17. Rahman M.A., Yadab M.K., Ali M.M. Emerging role of extracellular pH in tumor microenvironment as a therapeutic target for cancer immunotherapy. Cells. 2024;13(22):1924. doi: 10.3390/cells13221924
18. El-Kenawi A., Gatenbee C., Robertson-Tessi M., Bravo R., Dhillon J., Balagurunathan Y., Berglund A., Vishvakarma N., Ibrahim-Hashim A., Choi J., … Gillies R. Acidity promotes tumour progression by altering macrophage phenotype in prostate cancer. Br. J. Cancer. 2019;121(7):556–566. doi: 10.1038/s41416-019-0542-2
19. Xu B., Jin X., Min L., Li Q., Deng L., Wu H., Lin G., Chen L., Zhang H., Li C., … Mao J. Chloride channel-3 promotes tumor metastasis by regulating membrane ruffling and is associated with poor survival. Oncotarget. 2015;6(4):2434–2450. doi: 10.18632/oncotarget.2966
20. Okada Y., Sabirov R.Z., Sato-Numata K., Numata T. Cell death induction and protection by activation of ubiquitously expressed anion/cation channels. Front. Cell Dev. Biol. 2021;8:614040. doi: 10.3389/fcell.2020.614040
21. Wilczyński B., Dąbrowska A., Saczko J., Kulbacka J. The role of chloride channels in multidrug resistance. Membranes. 2022;12(1):38. doi: 10.3390/membranes12010038
22. Tóthová Z., Šemeláková M., Solárová Z., Tomc J., Debeljak N., Solár P. The role of PI3K/AKT and MAPK signaling pathways in erythropoietin signalization. Int. J. Mol. Sci. 2021;22(14):7682. doi: 10.3390/ijms22147682
23. Monteith G.R., Davis F.M., Roberts-Thomson S.J. Calcium channels and pumps in cancer: changes and consequences. J. Biol. Chem. 2012;287(38):31666– 31673. doi: 10.1074/jbc.R112.343061
24. Ong H.L., de Souza L.B., Ambudkar I.S. Role of TRPC channels in store-operated calcium entry. Adv. Exp. Med. Biol. 2016;898:87–109. doi: 10.1007/978-3-319-26974-0_5
25. Liu J.O. Calmodulin-dependent phosphatase, kinases, and transcriptional corepressors involved in T-cell activation. Immunol. Rev. 2009;228(1):184–198. doi: 10.1111/j.1600-065X.2008.00756.x
26. Zhang D., Wang F., Li P., Gao Y. Mitochondrial Ca2+ homeostasis: Emerging roles and clinical significance in cardiac remodeling. Int. J. Mol. Sci. 2022;23(6):3025. doi: 10.3390/ijms23063025
27. Mao W., Zhang J., Körner H., Jiang Y., Ying S. The emerging role of voltage-gated sodium channels in tumor biology. Front. Oncol. 2019;9:124. doi: 10.3389/fonc.2019.00124
28. Sanchez-Sandoval A.L., Hernández-Plata E., Gomora J.C. Voltage-gated sodium channels: From roles and mechanisms in the metastatic cell behavior to clinical potential as therapeutic targets. Front. Pharmacol. 2023;14:1206136. doi: 10.3389/fphar.2023.1206136
29. Parri M., Chiarugi P. Rac and Rho GTPases in cancer cell motility control. Cell Commun. Signal. 2010;8:23. doi: 10.1186/1478-811X-8-23
30. Khudiakov A., Zaytseva A., Perepelina K., Smolina N., Pervunina T., Vasichkina E., Karpushev A., Tomilin A., Malashicheva A., Kostareva A. Sodium current abnormalities and deregulation of Wnt/β-catenin signaling in iPSC-derived cardiomyocytes generated from patient with arrhythmogenic cardiomyopathy harboring compound genetic variants in plakophilin 2 gene. Biochim. Biophys. Acta Mol. Basis Dis. 2020;1866(11):165915. doi: 10.1016/j.bbadis.2020.165915
31. Qian K., Jiang C., Guan D., Zhuang A., Meng X., Wang J. Characterization of glutamate-gated chloride channel in Tribolium castaneum. Insects. 2023;14(7):580. doi: 10.3390/insects14070580
32. Portillo V., Jagannathan S., Wolstenholme A.J. Distribution of glutamate-gated chloride channel subunits in the parasitic nematode Haemonchus contortus. J. Comp. Neurol. 2003;462(2):213–222. doi: 10.1002/cne.10735
33. Wolstenholme A.J., Rogers A.T. Glutamate-gated chloride channels and the mode of action of the avermectin/milbemycin anthelmintics. Parasitology. 2005;131:Suppl:S85–S95. doi: 10.1017/S0031182005008218
34. Babu S., Nutman T.B. Immunology of lymphatic filariasis. Parasite Immunol. 2014;36(8):338–346. doi: 10.1111/pim.12081
35. Zorov D.B., Juhaszova M., Sollott S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014;94(3):909–950. doi: 10.1152/physrev.00026.2013
36. Navarro C., Ortega Á., Santeliz R., Garrido B., Chacín M., Galban N., Vera I., de Sanctis J.B., Bermúdez V. Metabolic reprogramming in cancer cells: Emerging molecular mechanisms and novel therapeutic approaches. Pharmaceutics 2022;14(6):1303. doi: 10.3390/pharmaceutics14061303
37. de Groot J., Sontheimer H. Glutamate and the biology of gliomas. Glia. 2011;59(8):1181–1189. doi: 10.1002/glia.21113
38. Sharma P., Aaroe A., Liang J., Puduvalli V.K. Tumor microenvironment in glioblastoma: Current and emerging concepts. Neurooncol. Adv. 2023;5(1):vdad009. doi: 10.1093/noajnl/vdad009
39. Cluntun A.A., Lukey M.J., Cerione R.A., Locasale J.W. Glutamine metabolism in cancer: Understanding the heterogeneity. Trends Cancer. 2017;3(3):169– 180. doi: 10.1016/j.trecan.2017.01.005
40. Jyotsana N., Ta K.T., DelGiorno K.E. The role of cystine/glutamate antiporter SLC7A11/xCT in the pathophysiology of cancer. Front. Oncol. 2022;12:858462. doi: 10.3389/fonc.2022.858462
41. Barzegar Behrooz A., Talaie Z., Jusheghani F., Łos M.J., Klonisch T., Ghavami S. Wnt and PI3K/ Akt/mTOR survival pathways as therapeutic targets in glioblastoma. Int. J. Mol. Sci. 2022;23(3):1353. doi: 10.3390/ijms23031353
42. Osei-Owusu J., Yang J., Vitery M.D.C., Qiu Z. Molecular biology and physiology of volume-regulated anion channel (VRAC). Curr. Top. Membr. 2018;81:177–203. doi: 10.1016/bs.ctm.2018.07.005
43. Bach M.D., Sørensen B.H., Lambert I.H. Stress-induced modulation of volume-regulated anion channels in human alveolar carcinoma cells. Physiol. Rep. 2018;6(19):e13869. doi: 10.14814/phy2.13869
44. Domingo-Fernández R., Coll R.C., Kearney J., Breit S., O’Neill L.A.J. The intracellular chloride channel proteins CLIC1 and CLIC4 induce IL-1β transcription and activate the NLRP3 inflammasome. J. Biol. Chem. 2017;292(29):12077–12087. doi: 10.1074/jbc.M117.797126
45. Crottès D., Jan L.Y. The multifaceted role of TMEM16A in cancer. Cell Calcium. 2019;82:102050. doi: 10.1016/j.ceca.2019.06.004
46. Liu T., Han S., Yao Y., Zhang G. Role of human monocarboxylate transporter 1 (hMCT1) and 4 (hMCT4) in tumor cells and the tumor microenvironment. Cancer Manag. Res. 2023;15:957–975. doi: 10.2147/CMAR.S421771
47. Gong Q., Song X., Tong Y., Huo L., Zhao X., Han Y., Shen W., Ru J., Shen X., Liang C. Recent advances of anti-tumor nano-strategies via overturning pH gradient: Alkalization and acidification. J. Nanobiotechnol. 2025;23(1):42. doi: 10.1186/s12951-025-03134-2
48. Becker H.M. Carbonic anhydrase IX and acid transport in cancer. Br. J. Cancer. 2020;122(2):157– 167. doi: 10.1038/s41416-019-0642-z
49. Stock C. pH-regulated single cell migration. Pflugers Arch. 2024;476(4):639-658. doi: 10.1007/s00424-024-02907-2
50. Pastorekova S., Gillies R.J. The role of carbonic anhydrase IX in cancer development: Links to hypoxia, acidosis, and beyond. Cancer Metastasis Rev. 2019;38(1-2):65–77. doi: 10.1007/s10555-019-09799-0
51. Loyo-Celis V., Patel D., Sanghvi S., Kaur K., Ponnalagu D., Zheng Y., Bindra S., Bhachu H.R., Deschenes I., Gururaja Rao S., Singh H. Biophysical characterization of chloride intracellular channel 6 (CLIC6). J. Biol. Chem. 2023;299(11):105349. doi: 10.1016/j.jbc.2023.105349
52. Juarez M., Schcolnik-Cabrera A., Dueñas-Gonzalez A. The multitargeted drug ivermectin: from an antiparasitic agent to a repositioned cancer drug. Am. J. Cancer Res. 2018;8(2):317–331.
53. Sprecher V.P., Coulibaly J.T., Hürlimann E., Hattendorf J., Keiser J. Efficacy and safety of moxidectin-albendazole and ivermectin-albendazole combination therapy compared to albendazole monotherapy in adolescents and adults infected with Trichuris trichiura: a randomized, controlled superiority trial. Clin. Infect. Dis. 2023;77(9):1294–1302. doi: 10.1093/cid/ciad387
54. El-Saber Batiha G., Alqahtani A., Ilesanmi O.B., Saati A.A., El-Mleeh A., Hetta H.F., Magdy Beshbishy A. Avermectin derivatives, pharmacokinet ics, therapeutic and toxic dosages, mechanism of action, and their biological effects. Pharmaceuticals (Basel). 2020;13(8):196. doi: 10.3390/ph13080196
55. Sharmeen S., Skrtic M., Sukhai M.A., Hurren R., Gronda M., Wang X., Fonseca S.B., Sun H., Wood T.E., Ward R., … Schimmer A.D.The antiparasitic agent ivermectin induces chloride-dependent membrane hyperpolarization and cell death in leukemia cells. Blood. 2010;116(18):3593–3603. doi: 10.1182/blood-2010-01-262675
56. Song P., Gao Z., Bao Y., Chen L., Huang Y., Liu Y., Dong Q., Wei X. Wnt/β-catenin signaling pathway in carcinogenesis and cancer therapy. J. Hematol. Oncol. 2024;17(1):46. doi: 10.1186/s13045-024-01563-4
57. Zhang Y., Sun T., Li M., Lin Y., Liu Y., Tang S., Dai C. Ivermectin-induced apoptotic cell death in human SH-SY5Y cells involves the activation of oxidative stress and mitochondrial pathway and Akt/ mTOR-pathway-mediated autophagy. Antioxidants (Basel). 2022;11(5):908. doi: 10.3390/antiox11050908
58. Mwacalimba K., Sheehy J., Adolph C., Savadelis M., Kryda K., Poulsen Nautrup B. A review of moxidectin vs. other macrocyclic lactones for prevention of heartworm disease in dogs with an appraisal of two commercial formulations. Front. Vet. Sci. 2024;11:1377718. doi: 10.3389/fvets.2024.1377718
59. Liu W., Gao Y., Li H., Wang X., Jin M., Shen Z., Yang D., Zhang X., Wei Z., Chen Z., Li J. Association between oxidative stress, mitochondrial function of peripheral blood mononuclear cells and gastrointestinal cancers. J. Transl. Med. 2023;21(1):107. doi: 10.1186/s12967-023-03952-8
60. Korotkov S.M. Mitochondrial oxidative stress is the general reason for apoptosis induced by different-valence heavy metals in cells and mitochondria. Int. J. Mol. Sci. 2023;24(19):14459. doi: 10.3390/ijms241914459
61. Jeong Y., Hoang N.T., Lovejoy A., Stehr H., Newman A.M., Gentles A.J., Kong W., Truong D., Martin S., Chaudhuri A., … Diehn M. Role of KEAP1/ NRF2 and TP53 mutations in lung squamous cell carcinoma development and radiation resistance. Cancer Discov. 2017;7(1):86–101. doi: 10.1158/2159-8290.CD-16-0127
62. Chai J.Y., Jung B.K., Hong S.J. Albendazole and mebendazole as anti-parasitic and anti-cancer agents: an update. Korean J. Parasitol. 2021;59(3):189–225. doi: 10.3347/kjp.2021.59.3.189
63. Petersen J.S.S.M., Baird S.K. Treatment of breast and colon cancer cell lines with anti-helmintic benzimidazoles mebendazole or albendazole results in selective apoptotic cell death. J. Cancer Res. Clin. Oncol. 2021;147(10):2945–2953. doi: 10.1007/s00432-021-03698-0
64. Castro L.S., Kviecinski M.R., Ourique F., Parisotto E.B., Grinevicius V.M., Correia J.F, Wilhelm Filho D., Pedrosa RC. Albendazole as a promising molecule for tumor control. Redox. Biol. 2016;10:90–99. doi: 10.1016/j.redox.2016.09.013