Contribution of gut microbiome to pancreatic ductal adenocarcinoma development
https://doi.org/10.18699/SSMJ20250202
Abstract
Over the past decade, significant progress has been made in understanding the role of microbiota as an ecosystem that functions as a separate organ in a macroorganism. It is known that disturbances in the intestinal microflora affect the pathogenesis and progression of many human diseases. In particular, in gastrointestinal oncology, the gut microbiota affects tumor growth due to dysbiosis, the release of bacterial toxins, and the modulation of cell signaling pathways. Recent studies indicate that the intestinal microbiome plays an important role in the pathogenesis of pancreatic ductal adenocarcinoma, affecting carcinogenesis, immune response, and treatment efficacy. For example, such microorganisms as Porphyromonas gingivalis and Fusobacterium nucleatum are involved in oncogenesis by modulating the tumor microenvironment and stimulating immune responses, which promotes tumor growth, metastasis, and resistance to therapy. In addition, the involvement of kynurenine pathway metabolites (kynurenine, quinolinic acid, and 3-hydroxyanthranilic acid) in cancer has been previously investigated. The current review attempts to clarify the role of bacterial metabolites such as trimethylamine oxide and lipopolysaccharide in influencing antitumor immunity, suggesting potential targets for enhancing the response to immunotherapy. Implementation of microbiome research findings into clinical practice is an emerging field. Personalized therapy for pancreatic cancer is possible through understanding and manipulating the microbiome, which requires further research to develop optimal therapeutic strategies and evaluate combination approaches.
About the Authors
D. V. ZaitsevRussian Federation
Daniil V. Zaitsev
163069, Arkhangelsk, Troitsky ave., 51
E. S. Trukhacheva
Russian Federation
Elizaveta S. Trukhacheva
163069, Arkhangelsk, Troitsky ave., 51
N. V. Davidovich
Russian Federation
Nataliya V. Davidovich, candidate of medical sciences
163069, Arkhangelsk, Troitsky ave., 51
N. N. Kukalevskaya
Russian Federation
Natalia N. Kukalevskaya
163069, Arkhangelsk, Troitsky ave., 51
References
1. Siegel R.L., Miller K.D., Fuchs H.E., Jemal A. Cancer statistics, 2022. CA Cancer J. Clin. 2022;72(1):7–33. doi: 10.3322/caac.21708
2. Wong M.C.S., Jiang J.Y., Liang M., Fang Y., Yeung M.S., Sung J.J.Y. Global temporal patterns of pancreatic cancer and association with socioeconomic development. Scientific Reports. 2017;7(1):3165. doi: 10.1038/s41598-017-02997-2
3. Franck C., Müller C., Rosania R., Croner R.S., Pech M., Venerito M. Advanced pancreatic ductal adenocarcinoma: Moving forward. Cancers. 2020;12(7):1955. doi: 10.3390/cancers12071955
4. Park W., Chawla A., O’Reilly E.M. Pancreatic cancer: A review. JAMA. 2021;326(9):851–862. doi: 10.1001/jama.2021.13027
5. Lin W., Noel P., Borazanci E.H., Lee J., Amini A., Han I.W., Heo J.S., Jameson G.S., Fraser C., Steinbach M., … Han H. Single-cell transcriptome analysis of tumor and stromal compartments of pancreatic ductal adenocarcinoma primary tumors and metastatic lesions. Genome Medicine. 2020;12(1):1–14. doi: 10.1186/s13073-020-00776-9
6. Lowery M.A., Jordan E.J., Basturk O., Ptashkin R.N., Zehir A., Berger M.F., Leach T., Herbst B., Askan G., Maynard H., … O’Reilly E.M. Real-time genomic profiling of pancreatic ductal adenocarcinoma: potential actionability and correlation with clinical phenotype. Clin. Cancer Res. 2017;23(20):6094–6100. doi: 10.1158/1078-0432.CCR-17-0899
7. Hu T., Shukla S.K., Vernucci E., He C., Wang D., King R.J., Jha K., Siddhanta K., Mullen N.J., Attri K.S., … Singh P.K. Metabolic rewiring by loss of Sirt5 promotes Kras-induced pancreatic cancer progression. Gastroenterology. 2021;161(5):1584–1600. doi: 10.1053/j.gastro.2021.06.045
8. Wang S., Zheng Y., Yang F., Zhu L., Zhu X.Q., Wang Z.F., Wu X.L., Zhou C.H., Yan J.Y., Hu B.Y., … Dong Q.Z. The molecular biology of pancreatic adenocarcinoma: translational challenges and clinical perspectives. Signal Transduct. Target. Ther. 2021;6(1):249. doi: 10.1038/s41392-021-00659-4
9. Javadrashid D., Baghbanzadeh A., Derakhshani A., Leone P., Silvestris N., Racanelli V., Solimando A.G., Baradaran B. Pancreatic cancer signaling pathways, genetic alterations, and tumor microenvironment: the barriers affecting the method of treatment. Biomedicines. 2021;9(4):373. doi: 10.3390/biomedicines9040373
10. Yang Q., Zhang J., Zhu Y. Potential roles of the gut microbiota in pancreatic carcinogenesis and therapeutics. Front. Cell. Infect. Microbiol. 2022;12:872019. doi: 10.3389/fcimb.2022.872019
11. Heintz-Buschart A., Wilmes P. Human gut microbiome: Function matters. Trends Microbiol. 2018;26(7):563–574. doi: 10.1016/j.tim.2017.11.002
12. Fan Y., Pedersen O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021;19(1):55–71. doi: 10.1038/s41579-020-0433-9
13. Nicoletti A., Paratore M., Vitale F., Negri M., Quero G., Esposto G., Mignini I., Alfieri S., Gasbarrini A., Zocco M.A., Zileri Dal Verme L. Understanding the conundrum of pancreatic cancer in the omics sciences era. Int. J. Mol. Sci. 2024;25(14):7623. doi: 10.3390/ijms25147623
14. Bagchi S., Yuan R., Engleman E.G. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu. Rev. Pathol. 2021;16:223–249. doi: 10.1146/annurev-pathol-042020-042741
15. Ansaldo E., Farley T.K., Belkaid Y. Control of immunity by the microbiota. Annu. Rev. Immunol. 2021;39:449–479. doi: 10.1146/annurev-immunol-093019–112348
16. Rinninella E., Raoul P., Cintoni M., Franceschi F., Miggiano G.A.D., Gasbarrini A., Mele M.C. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7(1):14. doi: 10.3390/microorganisms7010014
17. McDonald J.A.K. In vitro models of the human microbiota and microbiome. Emerg. Top. Life Sci. 2017;1(4):373–384. doi: 10.1042/ETLS20170045
18. Halle-Smith J.M., Pearce H., Nicol S., Hall L.A., Powell-Brett S.F., Beggs A.D., Iqbal T., Moss P., Roberts K.J. Involvement of the gut microbiome in the local and systemic immune response to pancreatic ductal adenocarcinoma. Cancers (Basel). 2024;16(5):996. doi: 10.3390/cancers16050996
19. Gopalakrishnan V., Helmink B.A., Spencer C.N., Reuben A., Wargo J.A. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell. 2018;33(4):570–580. doi: 10.1016/j.ccell.2018.03.015
20. Shono Y., Docampo M.D., Peled J.U., Perobelli S.M., Velardi E., Tsai J.J., Slingerland A.E., Smith O.M., Young L.F., Gupta J., … Jenq R.R. Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Sci. Transl. Med. 2016;8(339):339ra71. doi: 10.1126/scitranslmed.aaf2311
21. Schwenger K.J., Clermont-Dejean N., Allard J.P. The role of the gut microbiome in chronic liver disease: the clinical evidence revised. JHEP Rep. 2019;1(3):214–226. doi: 10.1016/j.jhepr.2019.04.004
22. Riquelme E., Zhang Y., Zhang L., Montiel M., Zoltan M., Dong W., Quesada P., Sahin I., Chandra V., San Lucas A., … McAllister F. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell. 2019;178(4):795–806.e12. doi: 10.1016/j.cell.2019.07.008
23. Pushalkar S., Hundeyin M., Daley D., Zambirinis C.P., Kurz E., Mishra A., Mohan N., Aykut B., Usyk M., Torres L.E., … Miller G. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 2018;8(4):403–416. doi: 10.1158/2159-8290.CD-17-1134
24. Sethi V., Kurtom S., Tarique M., Lavania S., Malchiodi Z., Hellmund L., Zhang L., Sharma U., Giri B., Garg B., … Dudeja V. Gut microbiota promotes tumor growth in mice by modulating immune response. Gastroenterology. 2018;155(1):33–37. doi: 10.1053/j.gastro.2018.04.001
25. Thomas R.M., Gharaibeh R.Z., Gauthier J., Beveridge M., Pope J.L., Guijarro M.V., Yu Q., He Z., Ohland C., Newsome R., … Jobin C. Intestinal microbiota enhances pancreatic carcinogenesis in preclinical models. Carcinogenesis. 2018;39(8):1068–1078. doi: 10.1093/carcin/bgy073
26. Wei M.Y., Shi S., Liang C., Meng Q.C., Hua J., Zhang Y.Y., Liu J., Zhang B., Xu J., Yu X.J. The microbiota and microbiome in pancreatic cancer: more influential than expected. Mol. Cancer. 2019;18(1):97. doi: 10.1186/s12943-019-1008-0
27. Maisonneuve P., Amar S., Lowenfels A.B. Periodontal disease, edentulism, and pancreatic cancer: a meta-analysis. Ann. Oncol. 2017;28(5):985–995. doi: 10.1093/annonc/mdx019
28. Tan Q., Ma X., Yang B., Liu Y., Xie Y., Wang X., Yuan W., Ma J. Periodontitis pathogen Porphyromonas gingivalis promotes pancreatic tumorigenesis via neutrophil elastase from tumor-associated neutrophils. Gut Microbes. 2022;14(1):2073785. doi: 10.1080/19490976.2022.2073785
29. Pieterse E., Rother N., Garsen M., Hofstra J.M., Satchell S.C., Hoffmann M., Loeven M.A., Knaapen H.K., van der Heijden O.W.H., Berden J.H.M., Hilbrands L.B., van der Vlag J. Neutrophil extracellular traps drive endothelial-to-mesenchymal transition. Arterioscler. Thromb. Vasc. Biol. 2017;37(7):1371–1379. doi: 10.1161/ATVBAHA.117.309002
30. Ye C., Liu X., Liu Z., Pan C., Zhang X., Zhao Z., Sun H. Fusobacterium nucleatum in tumors: from tumorigenesis to tumor metastasis and tumor resistance. Cancer Biol. Ther. 2024;25(1):2306676. doi: 10.1080/15384047.2024.2306676
31. Udayasuryan B., Ahmad R.N., Nguyen T.T.D., Umaña A., Monét Roberts L., Sobol P., Jones S.D., Munson J.M., Slade D.J., Verbridge S.S. Fusobacterium nucleatum induces proliferation and migration in pancreatic cancer cells through host autocrine and paracrine signaling. Sci. Signal. 2022;15(756):eabn4948. doi: 10.1126/scisignal.abn4948
32. Chakladar J., Kuo S.Z., Castaneda G., Li W.T., Gnanasekar A., Yu M.A., Chang E.Y., Wang X.Q., Ongkeko W.M. The pancreatic microbiome is associated with carcinogenesis and worse prognosis in males and smokers. Cancers (Basel). 2020;12(9):2672. doi: 10.3390/cancers12092672
33. Guo W., Zhang Y., Guo S., Mei Z., Liao H., Dong H., Wu K., Ye H., Zhang Y., Zhu Y., … Kong X. Tumor microbiome contributes to an aggressive phenotype in the basal-like subtype of pancreatic cancer. Commun. Biol. 2021;4(1):1019. doi: 10.1038/s42003-021-02557-5
34. Sethi V., Vitiello G.A., Saxena D., Miller G., Dudeja V. The role of the microbiome in immunologic development and its implication for pancreatic cancer immunotherapy. Gastroenterology. 2019;156(7):2097–2115. doi: 10.1053/j.gastro.2018.12.045
35. Tian T.T., Chen G., Sun K., Wang X.Y., Liu Y., Wang F.Q., Yang B., Liu J., Han J.Y., Tang D.X. ChanLingGao alleviates intestinal mucosal barrier damage and suppresses the onset and progression of Colorectal cancer in AOM/DSS murine model. Int. Immunopharmacol. 2024;143(Pt 1):113193. doi: 10.1016/j.intimp.2024.113193
36. Zhu Y.H., Zheng J.H., Jia Q.Y., Duan Z.H., Yao H.F., Yang J., Sun Y.W., Jiang S.H., Liu D.J., Huo Y.M. Immunosuppression, immune escape, and immunotherapy in pancreatic cancer: focused on the tumor microenvironment. Cell. Oncol. (Dordr.). 2023;46(1):17–48. doi: 10.1007/s13402-022-00741-1
37. Gautam S.K., Batra S.K., Jain M. Molecular and metabolic regulation of immunosuppression in metastatic pancreatic ductal adenocarcinoma. Mol. Cancer. 2023;22(1):118. doi: 10.1186/s12943-023-01813-y
38. Wang H., Chen L., Qi L., Jiang N., Zhang Z., Guo H., Song T., Li J., Li H., Zhang N., Chen R. A single-cell atlas of tumor-infiltrating immune cells in pancreatic ductal adenocarcinoma. Mol. Cell. Proteomics. 2022;21(8):100258. doi: 10.1016/j.mcpro.2022.100258
39. Lee K.A., Shaw H.M., Bataille V., Nathan P., Spector T.D. Role of the gut microbiome for cancer patients receiving immunotherapy: Dietary and treatment implications. Eur. J. Cancer. 1990. 2020;138:149–155. doi: 10.1016/j.ejca.2020.07.026
40. Chen Y., Yang S., Tavormina J., Tampe D., Zeisberg M., Wang H., Mahadevan K.K., Wu C.J., Sugimoto H., Chang C.C., … Kalluri R. Oncogenic collagen I homotrimers from cancer cells bind to α3β1 integrin and impact tumor microbiome and immunity to promote pancreatic cancer. Cancer Cell. 2022;40(8):818–834.e9. doi: 10.1016/j.ccell.2022.06.011
41. Guan S.W., Lin Q., Yu H.B. Intratumour microbiome of pancreatic cancer. World J. Gastrointest. Oncol. 2023;15(5):713–730. doi: 10.4251/wjgo.v15.i5.713
42. Tan Q., Ma X., Yang B., Liu Y., Xie Y., Wang X., Yuan W., Ma J. Periodontitis pathogen Porphyromonas gingivalis promotes pancreatic tumorigenesis via neutrophil elastase from tumor-associated neutrophils. Gut Microbes. 2022;14(1):2073785. doi: 10.1080/19490976.2022.2073785
43. Alam A., Levanduski E., Denz P., Villavicencio H.S., Bhatta M., Alhorebi L., Zhang Y., Gomez E.C., Morreale B., Senchanthisai S., … Dey P. Fungal mycobiome drives IL-33 secretion and type 2 immunity in pancreatic cancer. Cancer Cell. 2022;40(2):153–167. e11. doi: 10.1016/j.ccell.2022.01.003
44. Protti M.P., de Monte L. Thymic stromal lymphopoietin and cancer: Th2-dependent and -independent mechanisms. Front. Immunol. 2020;11:2088. doi: 10.3389/fimmu.2020.02088
45. Li J., Betzler C., Lohneis P., Popp M.C., Qin J., Kalinski T., Wartmann T., Bruns C.J., Zhao Y., Popp F.C. The IL-17A/IL-17RA axis is not related to overall survival and cancer stem cell modulation in pancreatic cancer. Int. J. Mol. Sci. 2020;21(6):2215. doi: 10.3390/ijms21062215
46. Tabrizi E., Pourteymour Fard Tabrizi F., Mahmoud Khaled G., Sestito M.P., Jamie S., Boone B.A. Unraveling the gut microbiome’s contribution to pancreatic ductal adenocarcinoma: mechanistic insights and therapeutic perspectives. Front. Immunol. 2024;15:1434771. doi: 10.3389/fimmu.2024.1434771
47. Falcomatà C., Bärthel S., Schneider G., Rad R., Schmidt-Supprian M., Saur D. Context-specific determinants of the immunosuppressive tumor microenvironment in pancreatic cancer. Cancer Discovery. 2023;13(2):278–297. doi: 10.1158/2159-8290.CD-22-0876
48. Luu M., Riester Z., Baldrich A., Reichardt N., Yuille S., Busetti A., Klein M., Wempe A., Leister H., Raifer H., … Visekruna A. Microbial short-chain fatty acids modulate CD8+ T cell responses and improve adoptive immunotherapy for cancer. Nat. Commun. 2021;12(1):4077. doi: 10.1038/s41467-021-24331-1
49. Singh V., Lee G., Son H., Koh H., Kim E.S., Unno T., Shin J.H. Butyrate producers, “The Sentinel of Gut”: Their intestinal significance with and beyond butyrate, and prospective use as microbial therapeutics. Front. Microbiol. 2023;13:1103836. doi: 10.3389/fmicb.2022.1103836
50. Chen Z., Zhang S., Dong S., Xu H., Zhou W. Association of the microbiota and pancreatic cancer: opportunities and limitations. Front. Immunol. 2022;13:844401. doi: 10.3389/fimmu.2022.844401
51. Islaev A.A., Chibirova T.T., Takoeva E.A., Kokaev R.I. Lipopolysaccharide-induced model of inflammation in cells culture. Geny i kletki = Genes and Cells. 2022;17(4):19–30. [In Russian]. doi: 10.23868/gc375311
52. Yin H., Pu N., Chen Q., Zhang J., Zhao G., Xu X., Wang D., Kuang T., Jin D., Lou W., Wu W. Gut-derived lipopolysaccharide remodels tumoral microenvironment and synergizes with PD-L1 checkpoint blockade via TLR4/MyD88/AKT/NF-κB pathway in pancreatic cancer. Cell Death Dis. 2021;12(11):1033. doi: 10.1038/s41419-021-04293-4
53. Shatova O.P., Shestopalov A.V. Tryptophan metabolism: a new look at the role of tryptophan derivatives in the human body. Uspekhi sovremennoy biologii = Biology Bulletin Reviews. 2023;143(1):3–15. [In Russian]. doi: 10.31857/S0042132423010076
54. Venkateswaran N., Conacci-Sorrell M. Kynurenine: an oncometabolite in colon cancer. Cell Stress. 2020;4(1):24–26. doi: 10.15698/cst2020.01.210
55. Basson C., Serem J.C., Hlophe Y.N., Bipath P. The tryptophan–kynurenine pathway in immunomodulation and cancer metastasis. Cancer Med. 2023;12(18):18691–18701. doi: 10.1002/cam4.6484
Review
For citations:
Zaitsev D.V., Trukhacheva E.S., Davidovich N.V., Kukalevskaya N.N. Contribution of gut microbiome to pancreatic ductal adenocarcinoma development. Сибирский научный медицинский журнал. 2025;45(2):19-29. (In Russ.) https://doi.org/10.18699/SSMJ20250202