Preview

Сибирский научный медицинский журнал

Advanced search

Coupling of the expression of proliferation and epithelialmesenchymal transition markers with the histidine-rich glycoprotein HRG mRNA expression in breast diseases

https://doi.org/10.18699/SSMJ20240211

Abstract

Non-malignant breast diseases (NMBD) may increase the risk of developing a malignant neoplasm. Therefore, it seems relevant to search for criteria for cell malignancy in NMBD. Aim of the study was to investigate the relationship between expression of proliferation and epithelial-mesenchymal transition (EMT) markers and histidine-rich glycoprotein (HRG) mRNA in breast diseases. Material and methods. In breast biopsy specimens of 37 patients with invasive carcinoma of a non-specific type (ICNT) and 17 patients with NMBD expression of proliferation markers (Ki-67, cyclin D1 (CCND1)) and EMT markers (E-cadherin (CDH1), type II collagen (CII) and β1-integrin (CD29)) was determined immunohistochemically. HRG mRNA expression was estimated using real time PCR. Results. HRG mRNA expression was detected in 91.9 % cases (34 of 37) in ICNT, 82.4 % (14 of 17) in NMBD and in the latter case was inversely related to the expression of CDH1, CD29 and Ki-67. A direct relationship has been established between the presence of Ki-67 and CCND1, CII, between CCND1 and CD29 in NMBD. In patients with ICNT, a direct correlation was found between the HRG mRNA expression and the presence of CII, and an inverse correlation between the number of cells containing CII and CD29. It was found that in ICNT and NMBD with the presence of HRG mRNA expression, the CDH1 expression is less than in its absence. Conclusions. Indicators of HRG mRNA expression in NMBD, combined with the assessment of proliferation and EMT markers, can be useful in developing criteria for cell malignancy in benign breast diseases.

About the Authors

S. А. Arkhipov
Institute of Molecular Biology and Biophysics of Federal Research Center of Fundamental and Translational Medicine; Novosibirsk State Medical University of Minzdrav of Russia
Russian Federation

Sergey A. Arkhipov, doctor of biological sciences

630117, Novosibirsk, Timakova st., 2;

630091, Novosibirsk, Krasny ave., 52



А. А. Studenikina
Institute of Molecular Biology and Biophysics of Federal Research Center of Fundamental and Translational Medicine; Novosibirsk State Medical University of Minzdrav of Russia
Russian Federation

Anastasia A. Studenikina, candidate of medical sciences

630117, Novosibirsk, Timakova st., 2;

630091, Novosibirsk, Krasny ave., 52



V. V. Arkhipova
Novosibirsk State Medical University of Minzdrav of Russia
Russian Federation

Valentina V. Arkhipova

630091, Novosibirsk, Krasny ave., 52



А. V. Proskura
Institute of Molecular Biology and Biophysics of Federal Research Center of Fundamental and Translational Medicine
Russian Federation

Andrey V. Proskura, candidate of medical sciences

630117, Novosibirsk, Timakova st., 2



А. I. Autenshlyus
Institute of Molecular Biology and Biophysics of Federal Research Center of Fundamental and Translational Medicine; Novosibirsk State Medical University of Minzdrav of Russia
Russian Federation

Alexander I. Autenshlyus, doctor of biological sciences, professor

630117, Novosibirsk, Timakova st., 2;

630091, Novosibirsk, Krasny ave., 52



References

1. Liu H., Shi S., Gao J., Guo J., Li M., Wang L. Analysis of risk factors associated with breast cancer in women: a systematic review and meta-analysis. Transl. Cancer Res. 2022;11(5):1344–1353. doi: 10.21037/tcr22-193

2. Roman M., Louro J., Posso M., Vidal C., Bargallo X., Vazquez I., Quintana M., Alcantara R., Saladie F., Del Riego J., … On Behalf Of The Bele And Iris Study Groups. Long-term risk of breast cancer after diagnosis of benign breast disease by screening mammography. Int. J. Environ. Res. Public. Health. 2022;19(5):2625. doi: 10.3390/ijerph19052625

3. Kim S., Xuan T., Song H., Ryu S., Chang Y., Park B. Mammographic breast density, benign breast disease, and subsequent breast cancer risk in 3.9 million Korean women. Radiology. 2022;304(3):534–541. doi: 10.1148/radiol.212727

4. Salamat F., Niakan B., Keshtkar A., Rafiei E., Zendehdel M. Subtypes of benign breast disease as a risk factor of breast cancer: a systematic review and meta analyses. Iran. J. Med. Sci. 2018;43(4):355–364.

5. Posso M., Alcantara R., Vazquez I., Comerma L., Bare M., Louro J., Quintana M., Román M., MarcosGragera R., Vernet-Tomas M., … BELE study group. Mammographic features of benign breast lesions and risk of subsequent breast cancer in women attending breast cancer screening. Eur. Radiol. 2022;32(1):621– 629. doi: 10.1007/s00330-021-08118-y

6. Visscher D.W., Nassar A., Degnim A.C., Frost M.H., Vierkant R., Frank R., Tarabishy Y., Radisky D., Hartmann L. Sclerosing adenosis and risk of breast cancer. Breast Cancer Res. Treat. 2014;44(1):205– 212. doi: 10.1007/s10549-014-2862-5

7. Aroner S.A., Collins L.C., Connolly J.L., Colditz G., Schnitt S., Rosner B., Hankinson S., Tamimi R. Radial scars and subsequent breast cancer risk: results from the Nurses’ Health Studies. Breast Cancer Res. Treat. 2013;139(1):277–285. doi: 10.1007/s10549-013-2535-9

8. Castells X., Domingo L., Corominas J.M., ToraRocamora I., Quintana M., Bare M., Vidal C., Natal C., Sanchez M., Saladie F., … Sala M. Breast cancer risk after diagnosis by screening mammography of nonproliferative or proliferative benign breast disease: a study from a population based screening program. Breast Cancer Res. Treat. 2015;149(1):237–244. doi: 10.1007/s10549-014-3208-z

9. Mendez M.J., Hoffman M.J., Cherry E.M., Lemmon C., Weinberg S. Cell fate forecasting: a data-assimilation approach to predict epithelial-mesenchymal transition. Biophys. J. 2020;118(7):1749–1768. doi: 10.1016/j.bpj.2020.02.011

10. Prieto-Garcia E., Diaz-Garcia C.V., GarciaRuiz I., Agullo-Ortuno T. Epithelial-to-mesenchymal transition in tumor progression. Med. Oncol. 2017;34(7):122. doi: 10.1007/s12032-017-0980-8

11. Sung J.Y., Cheong J.H. Pan-cancer analysis reveals distinct metabolic reprogramming in different epithelial-mesenchymal transition activity states. Cancers (Basel). 2021;13(8):1778. doi: 10.3390/cancers13081778

12. Zhu X., Chen L., Huang B., Wang Y., Ji L., Wu J., Di G., Liu G., Yu K., Shao Z., Wang Z. The prognostic and predictive potential of Ki-67 in triplenegative breast cancer. Sci. Rep. 2020;10(1):225. doi: 10.1038/s41598-019-57094-3

13. Ortiz A.B., Garcia D., Vicente Y., Palka M., Bellas C., Martin P. Prognostic significance of cyclin D1 protein expression and gene amplification in invasive breast carcinoma. PLoS One. 2017;12(11):e0188068. doi: 10.1371/journal.pone.0188068

14. Thulin A., Ringvall M., Dimberg A., Karehed K., Vaisanen T., Vaisanen M., Hamad O., Wang J., Bjerkvig R., Nilsson B., … Olsson A. Activated platelets provide a functional microenvironment for the antiangiogenic fragment of histidine-rich glycopro tein. Mol. Cancer Res. 2009;7(11):1792–1802. doi: 10.1158/1541-7786.MCR-09-0094

15. Eissa S., Azzazy H., Matboli M., Shawky S., Said H., Anous F. The prognostic value of histidinerich glycoprotein RNA in breast tissue using unmodified gold nanoparticles assay. Appl. Biochem. Biotechnol. 2014;174(2):751–761. doi: 10.1007/s12010-014-1085-x

16. Cedervall J., Zhang Y., Ringvall M., Thulin A., Moustakas A., Jahnen-Dechent W., Siegbahn A., Olsson A. HRG regulates tumor progression, epithelial to mesenchymal transition and metastasis via plateletinduced signaling in the pre-tumorigenic microenvironment. Angiogenesis. 2013;16(4):889–902. doi: 10.1007/s10456-013-9363-8

17. Johnson L.D., Goubran H.A., Kotb R. Histidine rich glycoprotein and cancer: a multi-faceted relationship. Anticancer Res. 2014;34(2):593–603.

18. Prieto-Garcia E., Diaz-Garcia C.V., Garcia-Ruiz I., Agullo-Ortuno T. Epithelial-to-mesenchymal transition in tumor progression. Med. Oncol. 2017;34(7):122. doi: 10.1007/s12032-017-0980-8

19. Canel M., Serrels A., Frame M.C., Brunton V. E-cadherin-integrin crosstalk in cancer invasion and metastasis, J. Cell. Sci. 2013;126(Pt 2):393–401. doi: 10.1242/jcs.100115

20. Nazemi M., Rainero E. Cross-talk between the tumor microenvironment, extracellular matrix, and cell metabolism in cancer. Front. Oncol. 2020;10:239. doi: 10.3389/fonc.2020.00239


Review

For citations:


Arkhipov S.А., Studenikina А.А., Arkhipova V.V., Proskura А.V., Autenshlyus А.I. Coupling of the expression of proliferation and epithelialmesenchymal transition markers with the histidine-rich glycoprotein HRG mRNA expression in breast diseases. Сибирский научный медицинский журнал. 2024;44(2):90-95. (In Russ.) https://doi.org/10.18699/SSMJ20240211

Views: 417


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)