Preview

Сибирский научный медицинский журнал

Advanced search

Effect of per os administration of fucoxanthin alcoholic and oil extracts to Balb/c mice on biochemical parameters and serum cytokine level

https://doi.org/10.18699/SSMJ20240207

Abstract

Microalgae are a source of various biologically active substances, including carotenoids. One of the carotenoids of diatom microalgae is fucoxanthin, which has antioxidant, antimicrobial, antitumour and anti-inflammatory properties that can be used in the treatment of a wide range of human and animal pathologies. The aim of the study was to investigate the effect of alcohol and oil extract of fucoxanthin on biochemical parameters and levels of serum cytokines in mice during intragastric administration. Material and methods. Fucoxanthin extracts from the microalga Nanofrustulum shiloi were used. Mice of Balb/c strain were intragastrically administrated with 0.5 ml of oil (500 μg/ml) or alcoholic extract of fucoxanthin (187.5 μg/ml), mice in the comparison group were given 0.5 ml of olive oil or 45% ethyl alcohol once a day within 5 days. On the 8th day, blood serum was obtained and the level of albumin, triglycerides, cholesterol, low (LDL) and high density lipoproteins (HDL), urea, uric acid, creatinine, aspartate (AST) and alanine aminotransferases (ALT), lactate, stable nitric oxide (NO) metabolites (nitrites), cytokines (IL-1β, IL-6, IL-10, TNF-α, IFN-γ) was determined using ELISA with photometric detection. Results and discussion. In the comparison group, ethyl alcohol promoted an increase in serum triglyceride, cholesterol, LDL, HDL, ALT, AST, nitrite, IL-10, IFN-γ and TNF-α content compared to intact animals. Fucoxanthin alcoholic extract administration increased the level of LDL, HDL, uric acid, TNF-α and decreased albumin, cholesterol, uric acid, creatinine, ALT, AST, IL-6 content compared to control. The olive oil group showed a decrease in serum triglycerides, cholesterol, urea, uric acid, ALT and AST content but an increase in LDL, HDL, nitrite level compared to the control. Administration of fucoxanthin oil extract to animals decreased albumin, triglycerides, cholesterol, HDL, uric acid, ALT, AST, lactate, IL-6, IL-10 compared to control. Conclusions. Thus, it was discovered that fucoxanthin in Balb/c mice contributes to a decrease in hepatic synthetic function, as evidenced by the change in the concentration of albumin, triglycerides, uric acid), influences energy metabolism (creatinine, lactate), cell membrane stability (cholesterol, LDL, HDL), serum transaminase activity, pro- and anti-inflammatory cytokines content.

About the Authors

А. Р. Lykov
Research Institute of Clinical and Experimental Lymphology – Branch of the Federal Research Center Institute of Cytology and Genetics of SB RAS
Russian Federation

Alexander P. Lykov, candidate of medical sciences

630060, Novosibirsk, Timakova st., 2



R. G. Gevorgiz
Kovalevsky Institute of Biology of the Southern Seas of RAS
Russian Federation

Ruslan G. Gevorgiz, candidate of biological sciences

299011, Sevastopol, Nakhimova ave., 2



S. N. Zheleznova
Kovalevsky Institute of Biology of the Southern Seas of RAS
Russian Federation

Svetlana N. Zheleznova, candidate of biological sciences

299011, Sevastopol, Nakhimova ave., 2



L. N. Rachkovskaya
Research Institute of Clinical and Experimental Lymphology – Branch of the Federal Research Center Institute of Cytology and Genetics of SB RAS
Russian Federation

Lubov N. Rachkovskaya, candidate of chemical sciences

630060, Novosibirsk, Timakova st., 2



О. V. Poveshchenko
Research Institute of Clinical and Experimental Lymphology – Branch of the Federal Research Center Institute of Cytology and Genetics of SB RAS
Russian Federation

Olga V. Poveshchenko, doctor of medical sciences

630060, Novosibirsk, Timakova st., 2



References

1. Grebnev D.Yu., Maklakova I.Yu., Titova D.I., Permyakov N.S. Geroprotective properties of fucoxanthin. Ural’skiy meditsinskiy zhurnal = Ural Medical Journal. 2022;21(5):94–101. [In Russian]. doi/10.52420/2071-5943-2022-21-5-94-101

2. Takatani N., Taya D., Katsuki A., Beppu F., Yamano Y., Wada A., Miyashita K., Hosokawa M. Identification of paracentrone in fucoxanthin-fed mice and anti-inflammatory effect against lipopolysaccharide-stimulated macrophages and adipocytes. Mol. Nutr. Food. Res. 2021;65(2):e2000405. doi: 10.1002/mnfr.202000405

3. Wu H., Li S., Wang L., Liang J., Yan L., Dong J. Fucoxanthin, a marine carotenoids, suppresses Mycoplasma pneumoniae-triggered inflammatory cytokine production and promotes bacterial clearance in a murine model. Evid. Based Complement. Alternat. Med. 2022;2022:6238162. doi: 10.1155/2022/6238162

4. Takatani N., Sakimura K., Nagata K., Beppu F., Yamano Y., Maoka T., Hosokawa M. Identification and tissue distribution of fucoxanthinol and amarouciaxanthin A fatty acid esters in fucoxanthin-fed mice. Food Chem. 2023;410:135318. doi: 10.1016/j.foodchem.2022.135318

5. Zhang X., Fan M., Luo K., Xu W., Dong J., Wang D., Chen L., Yu J. In vivo assessment of the effects of mono-carrier encapsulated fucoxanthin nanoparticles on type 2 diabetic C57 mice and their oxidative stress. Antioxidants (Basel). 2022;11(10):1976. doi: 10.3390/antiox11101976

6. Lykov A., Surovtseva M., Kim I., Bondarenko N., Poveshshenko O., Uvarov I., Gevorgiz R., Zheleznova S. Bioavaikability and safety of lipid fraction from different taxa of microalgae in female C57Bl/6 mice. Biointrface Research in Applied Chemistry. 2022;12(5):6845–6862. doi: 10.33263/BRIAC125.58456862

7. Gesser B., Leffers H., Jinquan T., Vestergaard C., Kirstein N., Sindet-Pedersen S., Jensen S.L., Thestrup-Pedersen K., Larsen C.G. Identification of functional domains on human interleukin 10. Proc. Natl. Acad. Sci. USA. 1997;94(26):14620–14625. doi: 10.1073/pnas.94.26.14620

8. Bensi G., Raugei G., Palla E., Carinci V., Tornese Buonamassa D., Melli M. Human interleukin-1 beta gene. Gene. 1987;52(1):95–101. doi: 10.1016/0378-1119(87)90398-2

9. Hammacher A., Ward L.D., Weinstock J., Treutlein H., Yasukawa K., Simpson R.J. Structure-function analysis of human IL-6: identification of two distinct regions that are important for receptor binding. Protein Sci. 1994;3(12):2280–2293. doi: 10.1002/pro.5560031213

10. Tanabe O., Akira S., Kamiya T., Wong G.G., Hirano T., Kishimoto T. Genomic structure of the murine IL-6 gene. High degree conservation of potential regulatory sequences between mouse and human. J. Immunol. 1988;141(11):3875–3881.

11. Szente B.E., Soos J.M., Johnson H.W. The C-terminus of IFN gamma is sufficient for intracellular function. Biochem. Biophys. Res. Commun. 1994;203(3):1645–1654. doi: 10.1006/bbrc.1994.2375

12. Skulte I.V., Sergeeva E.O., Potapova A.A., Dodokhova M.A. Study of the effect of glycyram and glycerinate on hypolipidemic activity in alcoholic intoxication in rats. Sovremennye problemy nauki i obrazovaniya = Modern Problems of Science and Education. 2015; 5:276–233. [In Russian].

13. Quiles J.L., Huertas J.R., Ochoa J.J., Battino M., Mataix J., Mañas M. Dietary fat (virgin olive oil or sunflower oil) and physical training interactions on blood lipids in the rat. Nutrition. 2003;19(4):363–368. doi: 10.1016/s0899-9007(02)00949-8

14. Jeejeebhoy K.N., Phillips M.J., Bruce-Robertson A., Ho J., Sodtke U. The acute effect of ethanol on albumin, fibrinogen and transferrin synthesis in the rat. Biochem. J. 1972;126(5):1111–1124. doi: 10.1042/bj1261111

15. Slautin V.N., Grebnev D.Y., Maklakova I.Y., Sazonov S.V. Fucoxanthin exert dose-dependent antifibrotic and anti-inflammatory effects on CCl4-induced liver fibrosis. J. Nat. Med. 2023;77(4):953–963. doi: 10.1007/s11418-023-01723-9

16. Huang L.L., Huang X.Q., Zhang X.Q., Liu J., Zhang Y.P., Zhao H.Y., Huang M.Q. Effect of fucoxanthin on insulin resistance in obese mice induced by high fat diet. Zhongguo Zhong Yao Za Zhi. 2021;46(1):171– 176. doi: 10.19540/j.cnki.cjcmm.20200927.402

17. Lin H.V., Tsou Y.C., Chen Y.T., Lu W.J., Hwang P.A. Effects of low-molecular-weight fucoidan and high stability fucoxanthin on glucose homeostasis, lipid metabolismm and liver function in a mouse model of type II diabetes. Mar. Drugs. 2017;15(4):113. doi: 10.3390/md15040113

18. Wu S.J., Liou C.J., Chen Y.L., Cheng S.C., Huang W.C. Fucoxanthin ameliorates oxidative stress and airway inflammation in tracheal epithelial cells and asthmatic mice. Cells. 2021;10(6):1311. doi: 10.3390/cells10061311

19. Prasedya E.S., Martyasari N.W.R., Abidin A.S., Pebriani S.A., Ilhami B.T.K., Frediansyah A., Sunarwidhi A.L., Widyastuti S., Sunarpi H. Macroalgae Sargassum cristaefolium extract inhibits proinflammatory cytokine expression in BALB/c mice. Scientifica (Cairo). 2020;2020:9769454. doi: 10.1155/2020/9769454


Review

For citations:


Lykov А.Р., Gevorgiz R.G., Zheleznova S.N., Rachkovskaya L.N., Poveshchenko О.V. Effect of per os administration of fucoxanthin alcoholic and oil extracts to Balb/c mice on biochemical parameters and serum cytokine level. Сибирский научный медицинский журнал. 2024;44(2):58-63. (In Russ.) https://doi.org/10.18699/SSMJ20240207

Views: 414


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)