The role of cytokines in the pathogenesis of malignant neoplasms
https://doi.org/10.18699/SSMJ20230202
Abstract
The paper analyzes the literature data on the role of cytokines in the pathogenesis of malignant neoplasms (MN). Cytokines are biologically active, hormone-like proteins that regulate a wide range of processes occurring in the body. Cytokines determine the type and duration of the immune response, stimulation or suppression of cell growth, their differentiation, and functional activity. The complex of cytokines produced in the tumor microenvironment plays an important role in the pathogenesis of MN. The spectra of biological activities of cytokines overlap in most cases. The same process in a cell can be stimulated by more than one cytokine, creating a favorable environment for the initiation and progression of MN. The immune system can recognize transformed cells. Various cytokines correspond to specifc pathways activated by receptors on the cell surface, which in turn cause intracellular signaling cascades that affect target cellular functions. Cytokine genes are mutually related to oncogenes. Cytokines, which are released in response to infection, inflammation, or during an immune response to an antigen, can inhibit tumor development. In turn, cytokines, which weaken apoptosis and promote invasion and metastasis, promote tumor growth. Cytokines are involved in the initiation, development and metastasis of malignant neoplasms through various mechanisms.
About the Authors
V. L. RybkinaRussian Federation
Valentina L. Rybkina, doctor of medical sciences
456780, Ozersk, Ozerskoe highway, 19
G. V. Adamova
Russian Federation
Galina V. Adamova
456780, Ozersk, Ozerskoe highway, 19
D. S. Oslina
Russian Federation
Dar’ya S. Oslina
456780, Ozersk, Ozerskoe highway, 19
References
1. Grivennikov S.I., Greten F.R., Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–899. doi: 10.1016/j.cell.2010.01.025
2. Knuth A., Danowski B., Oettgen H.F., Old L.J. T-cell-mediated cytotoxicity against autologous malignant melanoma: analysis with interleukin 2-dependent T-cell cultures. Proc. Natl. Acad. Sci. USA. 1984;81:3511–3515. doi: 10.1073/pnas.81.11.3511
3. van der Bruggen P., Traversari C., Chomez P., Lurquin C., de Plaen E., van den Eynde B., Knuth A., Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991;254:1643–1647. doi:10.1126/science.1840703
4. Sahin U., Tureci O., Pfreundschuh M. Serological identifcation of human tumor antigens. Curr. Opin. Immunol. 1997;9:709–716. doi: 10.1016/s0952-7915(97)80053-2
5. Lee P.P., Yee C., Savage P.A., Fong L., Brockstedt D., Weber Y.S., Johnson D., Swetter S., Thompson J., Greenberg P.D., Roederer M., Davis M.M. Characterization of circulating T cells specif c for tumor-associated antigens in melanoma patients. Nat. Med. 1999;5:677–685. doi: 10.1038/9525
6. Whiteside T.L. Inhibiting the inhibitors: evaluating agents targeting cancer immunosuppression. Expert. Opin. Biol. Ther. 2010;10:1019–1035. doi:10.1517/14712598.2010.482207
7. Frey A.B., Monu N. Effector-phase tolerance: another mechanism of how cancer escapes antitumor immune response. J. Leukoc. Biol. 2006;79:652–662. doi: 10.1189/jlb.1105628
8. Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer. 2005;5:263–274. doi: 10.1038/nrc1586
9. Gorelov A.I., Simbirtsev A.S., Zhuravskij D.A., Gorelova A.A. PD-1/PD-L1 inhibitors in the treatment of bladder cancer: from immune response mediator to targeted therapy. Urologicheskie vedomosti = Urology Reports. 2018;8(2):64–72. [In Russian]. doi: 10.17816/uroved8264-72
10. Dunn G.P., Koebel C.M., Schreiber R.D. Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol. 2006;6:836–848. doi: 10.1038/nri1961
11. Dunn G.P., Old L.J., Schreiber R.D. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21:137–148. doi: 10.1016/j.immuni.2004.07.017
12. Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013
13. Savel’eva O.E., Perel’muter V.M., Tashireva L.A., Denisov E.V., Isaeva A.V. Inflammation as a therapeutic target in the complex treatment of malignant tumors. Sibirskiy onkologicheskiy zhurnal = Siberian Journal of Oncology. 2017;16(3):65–78. [In Russian]. doi:10.21294/1814-4861-2017-16-3-65-78
14. Mantovani A., Allavena P., Sica A., Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–444. doi: 10.1038/nature07205
15. Greten F.R., Grivennikov S.I. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019;51(1):27–41. doi: 10.1016/j.immuni.2019.06.025
16. Hussain S.P., Hofseth L.J., Harris C.C. Radical causes of cancer. Nat. Rev. Cancer. 2003;3:276–285. doi: 10.1038/nrc1046
17. Dongli Y., Elnera S.G., Biana Z.M., Tillb G.O., Pettya H.R., Elner V.M. Proinflammatory cytokines increase reactive oxygen species through mitochondria and NADPH oxidase in cultured RPE cells. Exp. Eye Res. 2007;85(4):462–472. doi: 10.1016/j.exer.2007.06.013
18. Gronke K., Hernández P.P., Zimmermann J., Klose C.S.N., Kofoed-Branzk M., Guendel F., Witkowski M., Tizian C., Amann L., Schumacher F., … Diefenbach A. Interleukin-22 protects intestinal stem cells against genotoxic stress. Nature. 2019;566:249–253. doi: 10.1038/s41586-019-0899-7
19. Grivennikov S.I. Inflammation and colorectal cancer: colitis-associated neoplasia. Semin. Immunopathol. 2013;35:229–244. doi: 10.1007/s00281-012-0352-6
20. Yang Z.H., Dang Y.-Q., Ji G. Role of epigenetics in transformation of inflammation into colorectal cancer. World J. Gastroenterol. 2019;25(23):2863–2877. doi: 10.3748/wjg.v25.i23.2863
21. Yasmin R., Siraj S., Hassan A., Khan A.R., Abbasi R., Ahmad N. Epigenetic regulation of inflammatory cytokines and associated genes in human malignancies. Mediat. Inflammation. 2015;2015:201703.doi:10.1155/2015/201703
22. Louis I.V.S., Bohjanen P.R. Post-transcriptional regulation of cytokine and growth factor signaling in cancer. Cytokine Growth Factor Rev. 2017;33:83–93. doi: 10.1016/j.cytogfr.2016.11.004
23. Langowski J.L., Zhang X., Wu L., Mattson J.D., Chen T., Smith K., Basham B., McClanahan T., Kastelein R.A., Oft M. IL-23 promotes tumour incidence and growth. Nature. 2006;442:461–465. doi: 10.1038/nature04808
24. Kwong J., Chan F.L., Wong K., Birrer M.J., Archibald K.M., Balkwill F.R., Berkowitz R.S., Mok S.C. Inflammatory cytokine tumor necrosis factor a confers precancerous phenotype in an organoid model of normal human ovarian surface epithelial cells. Neoplasia. 2009;11(6):529–541. doi: 10.1593/neo.09112
25. Veldhoen M. Interleukin 17 is a chief orchestrator of immunity. Nat. Immunol. 2017;18:612–621. doi:10.1038/ni.3742
26. Qian Y., Liu C., Hartupee J., Altuntas C.Z., Gulen M.F., Jane-Wit D., Xiao J., Lu Y., Giltiay N., Liu J., … Li X. The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nat. Immunol. 2007;8:247–256. doi: 10.1038/ni1439
27. Gӧktuna S.I., Shostak K., Chau T.L., Heukamp L.C., Hennuy B., Duong H.Q., Ladang A., Close P., Klevernic I., Olivier F., … Chariot A. The prosurvival IKK-related kinase IKKε integrates LPS and IL17A signaling cascades to promote Wnt-dependent tumor development in the intestine. Cancer Res. 2016;76:2587–2599. doi: 10.1158/0008-5472.CAN-15-1473
28. Zepp J.A., Zhao J., Liu C., Bulek K., Wu L., Chen X., Hao Y., Wang Z., Wang X., Ouyang W., … Li X. IL-17A-induced PLET1 expression contributes to tissue repair and colon tumorigenesis. J. Immunol. 2017;199:3849–3857. doi: 10.4049/jimmunol.1601540
29. Wang K., Kim M.K., Caro G., Wong J., Shalapour S., Wan J., Zhang W., Zhong Z., Sanchez-Lopez E., Wu L.W., … Karin M. Interleukin-17 receptor a signaling in transformed enterocytes promotes early colorectal tumorigenesis. Immunity. 2014;41:1052–1063. doi: 10.1016/j.immuni.2014.11.009
30. Geismann C., Schäfer H., Gundlach J.P., Hauser C., Egberts J.H., Schneider G., Arlt A. NF-B dependent chemokine signaling in pancreatic cancer. Cancers. 2019;11:1445. doi: 10.3390/cancers11101445
31. Putoczki T.L., Thiem S., Loving A., Busuttil R.A., Wilson N.J., Ziegler P.K., Nguyen P.M., Preaudet A., Farid R., Edwards K.M., … Ernst M. Interleukin-11 is the dominant IL-6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically. Cancer Cell. 2013;24:257–271. doi: 10.1016/j.ccr.2013.06.017
32. Galdiero M.R., Marone G., Mantovani A. Cancer inflammation and cytokines. Cold Spring Harb. Perspect. Biol. 2018;10(8):a028662. doi: 10.1101/cshperspect.a028662
33. Zaalberg A., Moradi Tuchayi S., Ameri A.H., Ngo K.H., Cunningham T.J., Eliane J.P., Livneh M., Horn T.D., Rosman I.S., Musiek A., … Demehri S. Chronic inflammation promotes skin carcinogenesis in cancer-prone discoid lupus erythematosus. J. Investig. Derm. 2019;139:62–70. doi: 10.1016/j.jid.2018.06.185
34. Quinn K.M., Kartikasari A.E., Cooke R.E., Koldej R.M., Ritchie D.S., Plebanski M. Impact of age-, cancer- and treatment-driven inflammation on T cell function and immunotherapy. J. Leukocyte Biol. 2020;953–965. doi: 10.1002/JLB.5MR0520-466R
35. Greten F.R., Eckmann L., Greten T.F., Park J.M., Li Z.W., Egan L.J. IKKb links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell. 2004;118(3):285–296. doi: 10.1016/j.cell.2004.07.013
36. Barnes P.J., Karin M. Nuclear factor-kB: a pivotal transcription factor in chronic inflammatory diseases. New Engl. J. Med. 1997;336(15):1066–1071. doi: 10.1056/NEJM199704103361506
37. Mussbacher M., Salzmann M., Brostjan C., Hoesel B., Schoergenhofer C., Datler H., Hohensinner P., Basílio J., Petzelbauer P., Assinger A., Schmid J.A. Cell type-specifc roles of NF-kb linking inflammation and thrombosis. Front. Immunol. 2019;10:85. doi: 10.3389/fmmu.2019.00085
38. Xia Y., Shen S., Verma I.M. NF-kb, an active player in human cancers. Cancer Immunol. Res. 2014;2(9):823–830. doi: 10.1158/2326-6066.CIR-14-0112
39. Kaltschmidt C., Banz-Jansen C., Benhidjeb T., Beshay M., Förster C., Greiner J., Hamelmann E., Jorch N., Mertzlufft F., Pftzenmaier J., …Kaltschmidt B. A role for NF-kb in organ specifc cancer and cancer stem cells. Cancers (Basel). 2019;11(5):655. doi: 10.3390/cancers11050655
40. Gonzalez H., Hagerling C., Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 2018;32(19-20):1267–1284. doi: 10.1101/gad.314617.118
41. Liu P., Wang Y., Li X. Targeting the untargetable KRAS in cancer therapy. Acta Pharm. Sin. B. 2019;9(5):871–879. doi: 10.1016/j.apsb.2019.03.002
42. Davalos A.R., Coppe J.-P., Campisi J., Desprez P.Y. Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev. 2010;29(2):273–283. doi: 10.1007/s10555-010-9220-9
43. Epling-Burnette P., Liu J.H., Catlett-Falcone R., Turkson J., Oshiro M., Kothapalli R., Li Y., Wang J.M., Yang-Yen H.F., Karras J., Jove R., Loughran T.P.Jr. Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 Expression. J. Clin. Invest. 2001;107(3):351–362. doi:10.1172/JCI9940
44. Leslie K., Lang C., Devgan G., Azare J., Berishaj M., Gerald W., Kim Y.B., Paz K., Darnell J.E., Albanese C., … Bromberg J. Cyclin D1 is transcriptionally regulated by and required for transformation by activated signal transducer and activator of transcription 3. Cancer Res. 2006;66(5):2544–2552. doi:10.1158/0008-5472.CAN-05-2203
45. Gasche J.A., Hoffmann J., Boland C.R., Goel A. Interleukin-6 promotes tumorigenesis by altering DNA methylation in oral cancer cells. Int. J. Cancer. 2011;129(5):1053–1063. doi: 10.1002/ijc.25764
46. Malinowska K., Neuwirt H., Cavarretta I.T., Bektic J., Steiner H., Dietrich H., Moser P.L., Fuchs D., Hobisch A., Culig Z. Interleukin-6 stimulation of growth of prostate cancer in vitro and in vivo through activation of the androgen receptor. Endocr. Relat. Cancer. 2009;16(1):155–169. doi: 10.1677/ERC-08-0174
47. Corvinus F.M., Orth C., Moriggl R., Tsareva S.A., Wagner S., Pftzner E.B., Baus D., Kaufmann R., Huber L.A., Zatloukal K., … Friedrich K. Persistent STAT3 activation in colon cancer is associated with enhanced cell proliferation and tumor growth. Neoplasia. 2005;7(6):545–555. doi: 10.1593/neo.04571
48. Autenshlyus A.I., Sosnina A.V., Mikhajlova E.S., Morozov D.V., Varaksin N.A., Rukavishnikov M.Yu., Kozlova Yu.N., Kan’shina A.V. Cytokines and pathohistological picture of malignant neoplasms in cancer of the gastrointestinal tract. Meditsinskaya immunologiya = Medical Immunology. 2009;11(1):29–34. [In Russian].
49. Kamyshov S.V., Tillyashajkhov M.N. Imbalance in the cytokine system in patients with ovarian cancer. Zhurnal teoreticheskoj i klinicheskoj meditsiny = Journal of Theoretical and Clinical Medicine. 2018;(4):88–90. [In Russian].
50. Silva E.M., Mariano V.S., Pastrez P.R.A., Pinto M.C., Castro A.G., Syrjanen K.J., LongattoFilho A. High systemic IL-6 is associated with worse prognosis in patients with non-small cell lung cancer. PLoS One. 2017;12(7):e0181125. doi: 10.1371/journal.pone.0181125
51. Masjedi A., Hashemid V., Hojjat-Farsangie M., Ghalamfarsag G., Azizih G., Yousef M., Jadidi-Niaragh F. The signifcant role of interleukin-6 and its signaling pathway in the immunopathogenesis and treatment of breast cancer. Biomed. Pharmacother. 2018;108:1415–1424. doi: 10.1016/j.biopha.2018.09.177
52. Turano M., Cammarota F., Duraturo F., Izzo P., de Rosa M. A potential role of IL-6/IL-6R in the development and management of colon cancer. Membranes (Basel). 2021;11:312. doi: 10.3390/membranes11050312
53. Zejdlits A.A., Narov Yu.E. Features of the content of cytokines in the blood serum of patients with lung cancer. Mezhdunarodnyy zhurnal prikladnykh i fundamental’nykh issledovaniy = International Journal of Applied and Basic Research. 2013;6:124–125. [In Russian].
54. Cooks T., Pateras I.S., Tarcic O., Solomon H., Schetter A.J., Wilder S., Lozano G., Pikarsky E., Forshew T., Rosenfeld N., … Oren M. Mutant P53 Prolongs NF-kB activation and promotes chronic inflammation and inflammation-associated colorectal cancer. Cancer Cell. 2013;24(2):272. doi: 10.1016/j.ccr.2013.03.022
55. Schneider G., Henrich A., Greiner G., Wolf V., Lovas A., Wieczorek M., Wagner T., Reichardt S., von Werder A., Schmid R.M., … Krämer O.H. Cross talk between stimulated NF-kb and the tumor suppressor P53. Oncogene. 2010;29(19):2795–2806. doi: 10.1038/onc.2010.46
56. Cai X., Cao C., Li J., Chen F., Zhang S., Liu B., Zhang W., Zhang X., Ye L. Inflammatory factor TNF-a promotes the growth of breast cancer via the positive feedback loop of TNFR1/NF-kb (and/or P38)/P-STAT3/HBXIP/ TNFR1. Oncotarget. 2017;8(35):58338. doi:10.18632/oncotarget.16873
57. Zhang G.-P., Yue X., Li S.-Q. Cathepsin C interacts with TNF-a/P38 MAPK signaling pathway to promote proliferation and metastasis in hepatocellular carcinoma. Cancer Res. Treatment. 2020;52(1):10–23. doi: 10.4143/crt.2019.145
58. Charles K.A., Kulbe H., Soper R., Escorcio-Correia M., Lawrence T., Schultheis A., Chakravarty P., Thompson R.G., Kollias G., … Hagemann T. The tumor-promoting actions of TNF-a involve TNFR1 and IL-17 in ovarian cancer in mice and humans. J. Clin. Invest. 2009;119(10):3011–3023. doi: 10.1172/JCI39065
59. Suarez-Cuervo C., Harris K.W., Kallman L., Väänänen H.K., Selander K.S. Tumor necrosis factor-a induces Interleukin-6 production via extracellular-regulated kinase 1 activation in breast cancer cells. Breast. Cancer Res. Treat. 2003;80(1):1–8. doi: 10.1023/A:1024443303436
60. Balkwill F. Tumour necrosis factor and cancer. Nat. Rev. Cancer. 2009;9:361–371. doi: 10.1038/nrc2628
61. Stathopoulos G.T., Kollintza A., Moschos C., Psallidas I., Sherrill T.P., Pitsinos E.N., Vassiliou S., Karatza M., Papiris S.A., Graf D., … Kalomenidis I. Tumor necrosis factor-alpha promotes malignant pleural effusion. Cancer Res. 2007;67:9825–9834. doi: 10.1158/0008-5472.CAN-07-1064
62. Shang G.S., Liu L., Qin Y.W. IL-6 and TNF-α promote metastasis of lung cancer by inducing epithelial-mesenchymal transition. Oncol. Lett. 2017;13:4657–4660. doi: 10.3892/ol.2017.6048
63. Warsinggih, Limanu F., Labeda I., Lusikooy R.E., Mappincara, Faruk M. The relationship of tumor necrosis factor alpha levels in plasma toward the stage and differentiation degree in colorectal cancer. Medicina. Clínica. Práctica. 2021;4:100224. doi:10.1016/j.mcpsp.2021.100224
64. Cui X., Zhang H., Cao A., Cao L., Hu X. Cytokine TNF-α promotes invasion and metastasis of gastric cancer by down-regulating Pentraxin3. Journal of Cancer. 2020;1111(7):1800–1807. doi: 10.7150/jca.39562
65. Teicher B.A. Transforming growth factor-beta and the immune response to malignant disease. Clin. Cancer Res. 2007;13:6247–6251. doi: 10.1158/1078-0432.CCR-07-1654
66. Nie E., Jin X., Miao F., Yu T., Zhi T., Shi Z., Wang Y., Zhang J., Xie M., You Y. TGF-β1 modulates temozolomide resistance in glioblastoma via altered microRNA processing and elevated MGMT. Neuro-Oncology. 2021;23(3):435–446. doi:10.1093/neuonc/noaa198
67. Braun D.A., Fribourg M., Sealfon S.C. Cytokine response is determined by duration of receptor and signal transducers and activators of transcription 3 (STAT3) activation. J. Biol. Chem. 2013;288(5):2986–2993. doi: 10.1074/jbc.M112.386573
68. Chen L., Shi Y., Zhu X., Guo W., Zhang M., Che Y., Tang L., Yang X., You Q., Liu Z. IL-10 secreted by cancer−associated macrophages regulates proliferation and invasion in gastric cancer cells via C−Met/STAT3 signaling. Oncol. Rep. 2019;42(2):595–604. doi: 10.3892/or.2019.7206
69. Abakumova T.V., Antoneeva I.I., Gening T.P., Dolgova D.R., Gening S.O., Voronova O.S., Volgina I.V. The functional state of peripheral blood microphagocytes and the spectrum of cytokines produced by them in cervical cancer. Ul’yanovskiy mediko-biologicheskiy zhurnal = Ulyanovsk Biomedical Journal. 2013;(3):57–64. [In Russian].
70. Alimkhodzhaeva L.T. Diagnostic value of studying the levels of pro- and anti-inflammatory cytokines of the immune system in patients with breast cancer. Оpuholi zhenskoy reproduktivnoy sistemy = Woman Reproductive System Tumors. 2009;3:49–52. [In Russian].
71. Zhao S., Wu D., Wu P., Wang Z., Huang J. Serum IL-10 PredictsWorse Outcome in Cancer Patients: A Meta-Analysis. PLoS ONE. 2015;10:e0139598. doi:10.1371/journal.pone.0139598
72. Cam C., Karagoz B., Muftuoglu T., Bigi O., Emirzeoglu L., Celik S., Ozgun A., Tuncel T., Top C. The inflammatory cytokine interleukin-23 is elevated in lung cancer, particularly small cell type. Contemp. Oncol. (Pozn). 2016;20:215–219. doi: 10.5114/wo.2016.61562
73. Fukuda M., Ehara M., Suzuki S., Sakashita H. Expression of interleukin-23 and its receptors in human squamous cell carcinoma of the oral cavity. Mol. Med. Rep. 2010;3:89–93. doi: 10.3892/mmr_00000223
74. Smyth M.J., Thia K.Y., Street S.E., Cretney E., Trapani J.A., Taniguchi M., Kawano T., Pelikan S.B., Crowe N.Y., Godfrey D.I. Differential tumor surveillance by natural killer (NK) and NKT cells. J. Exp.Med. 2000;191:661–668. doi: 10.1084/jem.191.4.661
75. Tugues S., Burkhard S.H., Ohs I., Vrohlings M., Nussbaum K., vom Berg J., Kulig P . , Becher B. New insights into IL-12-mediated tumor suppression. Cell Death. Differ. 2015;22:237–246. doi:10.1038/cdd.2014.134
76. Youssef S.S., Mohammad M.M., Ezz-El-Arab L.R. Clinical signifcance of serum IL-12 level in patients with early breast carcinoma and its correlation with other tumor markers. OA Maced. J. Med. Sci. 2015;3(4):640–644. doi: 10.3889/oamjms.2015.106
77. O’Hara R.J., Greenman J., MacDonald A.W., Gaskell K.M., Topping K.P., Duthie G.S., Kerin M.J., Lee P.W., Monson J.R. Advanced colorectal cancer is associated with impaired interleukin 12 and enhanced interleukin 10 production. Clin. Cancer Res. 1998;4(8):1943–1948.
78. Song M., Ping Y., Zhang K., Yang L., Li F., Zhang C., Cheng S., Yue D., Maimela N.R., Qu J., … Zhang Y. Low-dose IFN-γ induces tumor cell stemness in tumor microenvironment of non-small cell lung cancer. Cancer Res. 2019;79(14):3737–3748. doi: 10.1158/0008-5472.CAN-19-0596
79. Kammertoens T., Sommermeyer D., Loddenkemper C., Loew R., Uckert W., Blankenstein T., Kammertoens T. Tumor rejection by local interferon gamma induction in established tumors is associated with blood vessel destruction and necrosis. Int. J. Cancer. 2011;128:371–378. doi: 10.1002/ijc.25350
80. Lippitz B.E. Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol. 2013;14: 218–228. doi: 10.1016/S1470-2045(12)70582-X
81. Takeda K., Nakayama M., Hayakawa Y., Kojima Y., Ikeda H., Imai N., Ogasawara K., Okumura K., Thomas D.M., Smyth M.J. IFN-g is required for cytotoxic T cell-dependent cancer genome immunoediting. Nat. Commun. 2017;8(14607):1–12. doi: 10.1038/ncomms14607
82. Lane R.S., Femel J., Breazeale A.P., Loo C.P., Thibault G., Kaempf A., Mori M., Tsujikawa T., Chang Y.H., Lund A.W. IFNγ activated dermal lymphatic vessels inhibit cytotoxic T cells in melanoma and inflamed skin. J. Exp. Med. 2018;215(12):3057– 3074. doi: 10.1084/jem.20180654
83. Sakatani T., Kita Y., Fujimoto M., Sano T., Hamada A., Nakamura K., Takada H., Goto T., Sawada A., Akamatsu S., Kobayashi T. IFN-gamma expression in the tumor microenvironment and CD8-positive tumor-infltrating lymphocytes as prognostic markers in urothelial cancer patients receiving pembrolizumab. Cancers. 2022;14:263. doi: 10.3390/cancers14020263
84. Hirashima T., Kanai T., Suzuki H., Yoshida H., Matsushita A., Kawasumi H., Samejima Y., Noda Y., Nasu S., Tanaka A., … Тanaka T. Тhe levels of interferon-gamma release as a biomarker for non-smallcell lung cancer patients receiving immune checkpoint inhibitors. Anticancer Res. 2019;39:6231–6240. doi:10.21873/anticanres.13832
85. Okamura H., Tsutsi H., Komatsu T., Yutsudo M., Hakura A., Tanimoto T., Torigoe K., Okura T., Nukada Y., Hattori K. Cloning of a new cytokine that induces IFN-γ production by T cells. Nature. 1995;378:88–91. doi: 10.1038/378088a0
86. Park H., Byun D., Kim T.S., Kim Y.I., Kang J.S., Hahm E.S., Kim S.H., Lee W.J., Song H.K., Yoon D.Y., … Cho D.H. Enhanced IL-18 expression in common skin tumors. Immunol. Lett. 2001;79:215–219. doi: 10.1016/s0165-2478(01)00278-4
87. Kim J., Kim C., Kim T.S., Bang S., Yang Y., Park H., Cho D. IL-18 enhances thrombospondin-1production in human gastric cancer via JNK pathway. Biochem. Biophys. Res. Commun. 2006;344:1284–1289. doi: 10.1016/j.bbrc.2006.04.016
88. Yoon D.Y., Cho Y.S., Park J.W., Kim S.H., Kim J.W. Up-regulation of reactive oxygen species (ROS) and resistance to Fas-mediated apoptosis in the C33A cervical cancer cell line transfected with IL-18 receptor. Clin. Chem. Lab. Med. 2004;42:499–506. doi:10.1515/CCLM.2004.085
89. Autenshlyus A.I., Studenikina A.A., Varaksin N.A. Cytokine production by tumor bioptate at different pathological prognostic stages in breast cancer. Dokl. Biochem. Biophys. 2021;497(1):86–89. doi: 10.1134/S1607672921020010
90. Conroy H., Mawhinney L., Donnelly S.C. Inflammation and cancer: macrophage migration inhibitory factor (MIF) – the potential missing link. QJM. 2010;103:831–836. doi: 10.1093/qjmed/hcq148
91. Calandra T., Roger T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat. Rev. Immunol. 2003;3:791–800. doi: 10.1038/nri1200
92. Tas F., Karabulut S., Serilmez M., Ciftci R., Duranyildiz D. Serum levels of macrophage migrationinhibitory factor (MIF) have diagnostic, predictive and prognostic roles in epithelial ovarian cancer patients. Tumour. Biol. 2014;35(4):3327–3331. doi: 10.1007/s13277-013-1438-z
93. Meyer-Siegler K.L., Iczkowski K.A., Vera P.L. Further evidence for increased macrophage migration inhibitory factor expression in prostate cancer. BMC Cancer. 2005;5:73. doi: 10.1186/1471-2407-5-73
94. Orditura M., Romano C., de Vita F., Galizia G., Lieto E., Infusino S., de Cataldis G., Catalano G. Behaviour of interleukin-2 serum levels in advanced non-small-cell lung cancer patients: relationship with response to therapy and survival. Cancer Immunol. Immunother. 2000;49:530–536. doi: 10.1007/s002620000150
95. Fiszer-Maliszewska L., den Otter W., Mordarski M. Effect of local interleukin-2 treatment on spontaneous tumours of different immunogenic strength. Cancer Immunol. Immunother. 1999;47(6):307–314. doi: 10.1007/s002620050535
96. Lowes M.A., Bishop G.A., Crotty K., Barnetson R.S., Halliday G.M. T helper 1 cytokine mRNA is increased in spontaneously regressing primarymelanomas. J. Invest. Dermatol. 1997;108:914–919. doi: 10.1111/1523-1747.ep12292705
97. Bakouny Z., Choueiri T.K. IL-8 and cancer prognosis on immunotherapy. Nature Medicine. 2020;26(5):650–651. doi: 10.1038/s41591-020-0873-9
98. Averkin M.A., Zlatnik E.Yu., Shaposhnikov A.V., Nikipelova E.A., Gevorkyan Yu.A. The study of the local level of cytokines in cancer of the colon and rectum. Sibirskiy onkologicheskiy zhurnal = Siberian Journal of Oncology. 2011;S1:7–8. [In Russian].
99. Ha H., Debnath B., Neamati N. Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases. Theranostics. 2017;7:1543–1588. doi: 10.7150/thno.15625
100. Alfaro C., Sanmamed M.F., RodríguezRuiz M.E., Teijeira Á., Oñate C., González Á., Ponz M., Schalper K.A., Pérez-Gracia J.L., Melero I. Interleukin-8 in cancer pathogenesis, treatment and follow-up. Cancer Treat. Rev. 2017;60:24–31. doi: 10.1016/j.ctrv.2017.08.004
101. Wilke C.M., Kryczek I., Wei S., Zhao E., Wu K., Wang G., Zou W. Th17 cells in cancer: help or hindrance? Carcinogenesis. 2011;32:643–649. doi:10.1093/carcin/bgr019
102. Jin C., Lagoudas G.K., Zhao C., Bullman S., Bhutkar A., Hu B., Ameh S., Sandel D., Liang X.S., Mazzilli S., … Jacks T. Commensal microbiota promote lung cancer development via γδ T cells. Cell. 2019;176:998–1013. doi: 10.1016/j.cell.2018.12.040
103. Punt S., Langenhoff J.M., Putter H., Fleuren G.J., Gorter A., Jordanova E.S. The correlations between IL-17 vs. Th17 cells and cancer patient survival: a systematic review. Oncoimmunology. 2015;4:e984547. doi: 10.4161/2162402X.2014.984547
104. Bedoui S.A., Barbirou M., Stayoussef M., Dallel M., Mokrani A., Makni L., Mezlini A., Bouhaouala B., Yacoubi-Loueslati B., Almawi W.Y. Association of interleukin-17A polymorphisms with the risk of colorectal cancer: A case-control study. Cytokine. 2018;110:18–23. doi: 10.1016/j.cyto.2018.04.017
105. Coffelt S.B., Kersten K., Doornebal C.W., Weiden J., Vrijland K., Hau C.-S., Verstegen N.J.M., Ciampricotti M., Hawinkels L.J.A.C., Jonkers J., de Visser K.E. IL-17-producing gdT cells and neutrophils conspire to promote breast cancer metastasis. Nature. 2015;522(7556):345–348. doi: 10.1038/nature14282
106. Chang S.H., Mirabolfathinejad S.G., Katta H., Cumpian A.M., Gong L., Caetano M.S., Moghaddam S.J., Dong C. T helper 17 cells play a critical pathogenic role in lung cancer. Proc. Natl. Acad. Sci. USA. 2014;111:5664–5669. doi: 10.1073/pnas.1319051111
107. Lim C., Savan R. The role of the IL-22/IL-22R1 axis in cancer. Cytokine Growth Factor Rev. 2014;25:257–271. doi: 10.1016/j.cytogfr.2014.04.005
108. Panigrahy D., Gartung A., Yang J., Yang H., Gilligan M.M., Sulciner M.L., Bhasin S.S., Bielenberg D.R., Chang J., Schmidt B.A., … Sukhatme V.P. Preoperative stimulation of resolution and inflammation blockade eradicates micrometastases. J. Clin. Invest. 2019;129(7):2964–2979. doi: 10.1172/JCI127282
109. Alizadeh A.M., Shiri S., Farsinejad S. Metastasis review: From bench to bedside. Tumor Biol. 2014;35:8483–8523. doi: 10.1007/s13277-014-2421-z
110. Mittal V. Epithelial mesenchymal transition in tumor metastasis. Annu. Rev. Pathol. 2018;13:395–412. doi: 10.1146/annurev-pathol-020117-043854
111. Xu J., Lamouille S., Derynck R. TGF-β-induced epithelial to mesenchymal transition. Cell Res. 2009;19:156–172. doi: 10.3390/ijms20112767
112. Yadav A., Kumar B., Datta J., Teknos T.N., Kumar P. IL-6 promotes head and neck tumor metastasis by inducing epithelial–mesenchymal transition via the JAK-STAT3-SNAIL signaling pathway. Mol. Cancer Res. 2011;9(12):1658–1667. doi: 10.1158/1541-7786.MCR-11-0271
113. Liu R.-Y., Zeng Y., Lei Z., Wang L., Yang H., Liu Z., Zhao J., Zhang H.T. JAK/STAT3 Signaling is required for TGF-β-induced epithelial-mesenchymal transition in lung cancer cells. Int. J. Oncol. 2014;44(5):1643–1651. doi: 10.3892/ijo.2014.2310
114. Pires B.R., Mencalha A.L., Ferreira G.M., de Souza W.F., Morgado-Dı́az J.A., Maia A.M., Corrêa S., Abdelhay E.S. NF-kappa B is involved in the regulation of EMT genes in breast cancer cells. PLoS One. 2017;12(1):e0169622. doi: 10.1371/journal.pone. 0169622.
115. Li R., Ong S.L., Tran L.M., Jing Z., Liu B., Park S.J., Huang Z.L., Walser T.C., Heinrich E.L., Lee G., … Dubinett S. Chronic IL-1β-induced inflammation regulates epithelial-to-mesenchymal transition memory phenotypes via epigenetic modifcations in non-small cell lung cancer. Sci. Rep. 2020;10(1):1–15. doi: 10.1038/s41598-020-61341-3
116. Lieu C., Heymach J., Overman M., Tran H., Kopetz S. Beyond VEGF: inhibition of the fbroblast growth factor pathway and antiangiogenesis. Clin. Cancer Res. 2011;17(19):6130–6139. doi: 10.1158/1078-0432.CCR-11-0659
117. Waugh D.J., Wilson C. The Interleukin-8 pathway in cancer. Clin. Cancer Res. 2008;14(21):6735–6741. doi: 10.1158/1078-0432.CCR-07-4843
118. Levy L., Hill C.S. Alterations in components of the TGF-b superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev. 2006;17(1-2):41–58. doi: 10.1016/j.cytogfr.2005.09.009
119. Gopinathan G., Milagre C., Pearce O.M., Reynolds L.E., Hodivala-Dilke K., Leinster D.A., Zhong H., Hollingsworth R.E., Thompson R., Whiteford J.R., Balkwill F. Interleukin-6 stimulates defective angiogenesis. Cancer Res. 2015;75(15):3098–30107. doi: 10.1158/0008-5472.CAN-15-1227
120. Li B., Vincent A., Cates J., Brantley-Sieders D.M., Polk D.B., Young P.P. Low levels of tumor necrosis factor-a increase tumor growth by inducing an endothelial phenotype of monocytes recruited to the tumor site. Cancer Res. 2009;69(1):338–348. doi: 10.1158/0008-5472.CAN-08-1565
121. Paduch R. The role of lymphangiogenesis and angiogenesis in tumor metastasis. Cell Oncol. (Dordr). 2016;39(5):397–410. doi: 10.1007/s13402-016-0281-9
122. Johnstone C.N., Chand A., Putoczki T.L., Ernst M. Emerging roles for IL-11 signaling in cancer development and progression: Focus on breast cancer. Cytokine Growth Factor Reviews. 2015;26(5):489–498. doi: 10.1016/j.cytogfr.2015.07.015
123. Suarez-Carmona M., Lesage J., Cataldo D., Gilles C. EMT and inflammation: Inseparable actors of cancer progression. Mol. Oncol. 2017;11:805–823. doi: 10.1002/1878-0261.12095
124. Ben-Baruch A. Organ selectivity in metastasis: regulation by chemokines and their receptors. Clin. Exp. Metastasis. 2008;25:345–356. doi: 10.1007/s10585-007-9097-3
125. Teng M.W., Andrews D.M., McLaughlin N., von Scheidt B., Ngiow S.F., Moller A., Hill G.R., Iwakura Y . , Oft M., Smyth M.J. IL-23 suppresses innate immune response in- dependently of IL-17A during carcinogenesis and metastasis. Proc. Natl. Acad. Sci. 2010;107:8328–8333. doi: 10.1073/pnas.1003251107
126. Glasner A., Levi A., Enk J., Isaacson B., Viukov S., Orlanski S., Scope A., Neuman T., Enk C.D., Hanna J.H., … Mandelboim O. NKp46 receptor-mediated interferon-g production by natural killer cells increases fbronectin 1 to alter tumor architecture and control metastasis. Immunity. 2018;48(1):107–119. doi:10.1016/j.immuni.2017.12.007
127. Song M., Ping Y., Zhang K., Yang L., Li F., Zhang C., Cheng S., Yue D., Maimela N.R., Qu J., … Zhang Y. Low-dose IFN-γ induces tumor cell stemness in tumor microenvironment of non-small cell lung cancer. Cancer Res. 2019;79(14):3737–3748. doi: 10.1158/0008-5472.CAN-19-0596
128. Kelly S.A., Gschmeissner S., East N., Balkwill F.R. Enhancement of metastatic potential by gamma-interferon. Cancer Res. 1991;51(15):4020–4027.
129. Chen H., Chou A.S., Liu Y., Hsieh C., Kang C., Pang S.T., Yeh C.T., Liu H.P., Liao S.K. Induction of metastatic cancer stem cells from the NK/LAK-resistant floating, but not adherent, subset of the UPLN1 carcinoma cell line by IFN-γ. Lab. Investig. 2011;91(10):1502–1513. doi: 10.1038/labinvest.2011.91
130. Lo U.G., Pong R.C., Yang D., Gandee L., Hernandez E., Dang A., Lin C.J., Santoyo J., Ma S.,Sonavane R., … Hsieh J.T. IFNγ-induced IFIT5 promotes epithelial-to-mesenchymal transition in prostate cancer via microRNA processing. Cancer Res. 2019;79(6):1098–1112. doi: 10.1158/0008-5472.CAN-18-2207
131. Kulig P., Burkhard S., Mikita-Geoffroy J., Croxford A.L., Hovelmeyer N., Gyulveszi G., Gorzelanny C., Waisman A., Borsig L., Becher B. IL17A-mediated endothelial breach promotes metastasis formation. Cancer Immunol. Res. 2016;4(1):26–32. doi: 10.1158/2326-6066.CIR-15-0154
132. Chen D., Li W., Liu S., Su Y., Han G., Xu C., Liu H., Zheng T., Zhou Y., Mao C. Interleukin-23 promotes the epithelial-mesenchymal transition of oesophageal carcinoma cells via the Wnt/b-catenin pathway. Sci. Rep. 2015;5:8604. doi: 10.1038/srep08604
133. Jung M.K., Song H.K., Kim K.E., Hur D.Y., Kim T., Bang S., Park H., Cho D.H. IL-18 enhances the migration ability of murine melanoma cells through the generation of ROI and the MAPK pathway. Immunol. Lett. 2006;107:125–130. doi: 10.1016/j.imlet.2006.08.004
134. Cherdyntseva N.V., Mitrofanova I.V., Buldakov M.A., Stakheeva M.N., Patysheva M.R., Zav’yalova M.V., Kzhyshkovska Yu.G. Macrophages and tumor progression: on the way to macrophage-specifc therapy. Byulleten’ sibirskoy meditsiny = Bulletin of Siberian Medicine. 2017;16(4):61–74. [In Russian]. doi:10.20538/1682-0363-2017-4-61-74
Review
For citations:
Rybkina V.L., Adamova G.V., Oslina D.S. The role of cytokines in the pathogenesis of malignant neoplasms. Сибирский научный медицинский журнал. 2023;43(2):15-28. (In Russ.) https://doi.org/10.18699/SSMJ20230202