Preview

Сибирский научный медицинский журнал

Advanced search

Efficiency of using a short-acting β2-agonist for the relief of acute cold bronchospasm in asthma patients with cold airway hyperresponsiveness

https://doi.org/10.18699/SSMJ20220511

Abstract

Excessive sensitivity of the respiratory tract to physical and chemical environmental triggers can vary for many reasons, reducing the therapy effectiveness in a patient with asthma. 
Aim of the study was to investigate the effectiveness of a short-acting bronchodilator in patients with asthma for the relief of acute cold bronchospasm after a test of isocapnic cold air hyperventilation (ICHV). 
Material and methods. In 281 (161 women; 120 men, p > 0.05) asthma patients with cold airway hyperresponsiveness (CAHR), the change in airway patency (FEV1) and the efficacy of short-acting β2-agonists (SABA) after a 3-minute isocapnic hyperventilation with cold (–20 ºС) air. 
Results. According to clinical data, patients had persistent asthma, mean age 35 (26; 44) years, 49 % of patients smoked, ACT 16 (12; 20) points, FEV1 90.0 ± 1.0 % predicted, FEV1/VC 71.4 ± 0.6 %, the increase in FEV1 after inhalation of SABA (∆FEV1β) was 11.1 (5.1; 20.5) %. The change in FEV1 for the ICHV varied within –16 (–22.0; –12.0) %. The use of SABA after the IHCV showed different efficacy for relief of an attack of cold bronchospasm. The median value of ∆FEV1β after ICHV was 21.1 (11.6; 33.3) %, with a range of –48.6 to 108.2 %. In the general group, there was a direct relationship between the level of asthma control in terms of ACT points and the baseline FEV1 (Rs = 0.17; p = 0.007), MEF25-75 (Rs = 0.18; p = 0.008), ∆FEV1β in response to SABA (Rs = –0.17; p = 0.0104), as well as the severity of the bronchial response to the ICHV (Rs = 0.15; p = 0.014). The latter, in turn, correlated with ∆FEV1β after ICHV (Rs = –0.28; p < 0.0001) after HCI. 
Conclusions. There is a differentiated airway response to SABA after acute cold bronchoprovocation. The results obtained can serve as an important tool for phenotyping of asthma patients with CAHR for the medication correction of сold bronchospasm.

About the Authors

A. G. Prihodko
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Russian Federation

Anna G. Prihodko, doctor of medical sciences

675000, Blagoveshchensk, Kalinin str., 22 



J. M. Perelman
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Russian Federation

Juliy M. Perelman, doctor of medical sciences, professor, corresponding member of RAS

675000, Blagoveshchensk, Kalinin str., 22 



References

1. Geier E.T., Theilmann R.J., Prisk G.K., Sá R.C. Regional airflow obstruction after bronchoconstriction and subsequent bronchodilation in subjects without pulmonary disease. J. Appl. Physiol. 2019;127(1):31–39. doi: 10.1152/japplphysiol.00912.2018

2. Prikhodko A.G., Perelman J.M., Kolosov V.P. Airway hyperresponsiveness. Vladivostok: Dal’nauka, 2011. 204 p. [In Russian].

3. Anderson S.D. Indirect challenge tests: Airway hyperresponsiveness in asthma: its measurement and clinical significance. Chest. 2010;138(2):25–30. doi: 10.1378/chest.10-0116

4. Pellegrino R., Viegi G., Brusasco V., Crapo R.O., Burgos F., Casaburi R., Coates A., van der Grinten C.P.M., Gustafsson P., Hankinson J., … Wanger J. Interpretative strategies for lung function tests. Eur. Respir. J. 2005;26(5):948–968. doi: 10.1183/09031936.05.00035205

5. Sylvester K.P., Clayton N., Cliff I., Hepple M., Kendrick A., Kirkby J., Miller M., Moore A., Rafferty G.F., O’Reilly L., … Butterfield K. ARTP statement on pulmonary function testing 2020. BMJ Open Respir. Res. 2020;7(1):e000575. doi: 10.1136/bmjresp-2020-000575

6. Sterk P.J., Fabbri L.M., Quanjer Ph.H., Cockcroft D.W., O´Byrne P.M., Anderson S.D., Juniper E.F., Malo J.L. Airway responsiveness : standardized challenge testing with pharmacological, physical and sensitizing stimuli in adults. Eur. Respir J. 1993;6(16):53–83.

7. Ul’yanychev N.V. Systematic research in medicine. Saarbrücken: LAP LAMBERT, 2014. 140 p. [In Russian].

8. Johannessen A., Lehmann S., Omenaas E.R., Eide G.E., Bakke P.S., Gulsvik A. Post-bronchodilator spirometry reference values in adults and implications for disease management. Am. J. Respir. Crit. Care Med. 2006;173(12):1316–1325. doi: 10.1164/rccm.200601-023OC

9. Perelman J.M., Naumov D.E., Prikhodko A.G., Kolosov V.P. Mechanisms and manifestations of osmotic airway hyperresponsiveness. Vladivostok: Dal’nauka, 2016. 240 p. [In Russian].

10. Pirogov A.B., Prikhodko A.G., Perelman J.M., Ul’yanychev N.V. Profile of bronchial inflammation and clinical features of mild bronchial asthma. Byulleten’ fiziologii i patologii dykhaniya = Bulletin of Physiology and Pathology of Respiration. 2018;(70):8–14. [In Russian]. doi: 10.12737/article_5c1261aedeeb84.53569846

11. Pirogov A.B., Prikhodko A.G., Perelman N.L., Afanasyeva E.Yu., Kochegarova E.Yu., Oshur L.Yu., Perelman J.M. Possibilities of achieving of bronchial asthma control against the background of baseline therapy with beclometasone/formoterol extrafine fixed combination: an open observational prospective study. Farmateka = Pharmateka. 2020;27(10):80–87. [In Russian]. doi: 10.18565/pharmateca.2020.10.80-87

12. Il’in A.V., Perelman J.M., Prikhodko A.G., Lenshin A.V. Interrelation of potency and reactivity of small bronchi with lung hyperinflation in patients with bronchial asthma and cold airway hyperresponsiveness. Dal’nevostochnyy meditsinskiy zhurnal = Far East Medical Journal. 2014;(3):18–22. [In Russian].

13. Kotaru C., Coreno A., Skowronski M., Muswick G., Gilkeson R.C., McFadden E.R. Jr. Morphometric changes after thermal and methacholine bronchoprovocations. J. Appl. Physiol. 2005;98(3):1028–1036. doi: 10.1152/japplphysiol.01186.2003

14. Winkler T., Venegas J.G. Complex airway behavior and paradoxical responses to bronchoprovocation. J. Appl. Physiol. 2007;103(2):655–663. doi:10.1152/japplphysiol.00041.2007

15. Winkler T., Venegas J.G., Harris R.S. Mathematical modeling of ventilation defects in asthma. Drug Discovery Today: Disease Models. 2015;15:3–8. doi:10.1016/j.ddmod.2014.02.008

16. Paredi P., Kharitonov S.A., Barnes P.J. Correlation of exhaled breath temperature with bronchial blood flow in asthma. Respir. Res. 2005;6(1):15. doi: 10.1186/1465-9921-6-15

17. Zimmerman M.P., Pisarri T.E. Bronchial vasodilation evoked by increased lower airway osmolarity in dogs. J. Appl. Physiol. 2000;88(2):425–432. doi: 10.1152/jappl.2000.88.2.425

18. Pisarri T.E., Giesbrecht G.G. Reflex tracheal smooth muscle contraction and bronchial vasodilation evoked by airway cooling in dogs. J. Appl. Physiol. 1997;82(5):1566–1572. doi: 10.1152/jappl.1997.82.5.1566

19. Pirogov A.B., Naumov D.E., Ushakova E.V. Predictive role of cyclic adenosinemonophosphate and plasma cortisol in the development of cold air induced bronchoconstriction in asthmatics Byulleten’ fiziologii i patologii dykhaniya = Bulletin of Physiology and Pathology of Respiration. 2012;(46);25–29. [In Russian].

20. Pirogov A.B., Prikhodko A.G., Perelman J.M. Interrelationship of IFN-γ, IL-4, pituitary-thyroid and pituitary-adrenocortical systems in cold airway hyperresponsiveness in patients with asthma. Immunologiya. 2021;42(5):480–489. [In Russian]. doi: 10.33029.0206-4952-2021-42-5-480-489

21. Naumov D.E., Perelman J.M., Kolosov V.P., Maksimov V.N., Voevoda M.I., Zhou X., Li Q. Influence of ADRB2 gene polymorphism on cold air hyperresponsiveness and asthma control depending on inhaled glucocorticoids use. Eur. Respir. J. 2012;40(56):481.

22. Naumov D.E., Perelman J.M., Maksimov V.N., Kolosov V.P., Zhou X.D., Li Q. Effect of ADRB2 polymorphism on the airway response to cold air in asthmatics. Eur. Respir. J. 2011;38(Suppl. 55):440.

23. Naumov D.E., Perelman J.M., Maksimov V.N., Kolosov V.P., Voevoda M.I., Zhou X.D., Li Q. Role of β2 adrenoreceptor gene polymorphism in the formation of cold hyperreactivity of the airways in asthmatics. Bull. Exp. Biol. Med. 2012;154(1):73–76 doi: 10.1007/s10517-012-1878-2

24. Kytikova O.Y., Novgorodtseva T.P., Antonyuk M.V., Gvozdenko T.A. The role of regulatory neuropeptides and neurotrophic factors in asthma pathophysiology. Russ. Open Med. J. Ther. 2019;8(4):402. doi: 10.15275/rusomj.2019.0402

25. de Logu F., Patacchini R., Fontana G., Geppetti P. TRP functions in the broncho-pulmonary system. Semin. Immunopathol. 2016;38(3):321–329. doi: 10.1007/s00281-016-0557-1

26. Kytikova O.Y., Novgorodtseva T.P., Denisenko Y.K., Gvozdenko T.A., Naumov D.E., Perelman J.M. Thermosensory transient receptor potential ion channels and asthma. Biomedicines. 2021;9(7):816. doi: 10.3390/biomedicines9070816

27. Plevkova J., Kollarik M., Poliacek I., Brozmanova M., Surdenikova L., Tatar M., Mori N., Canning B.J. The role of trigeminal nasal TRPM8-expressing afferent neurons in the antitussive effects of menthol. J. Appl. Physiol. 2013;115(2):268–274. doi: 10.1152/japplphysiol.01144.2012

28. Xing H., Ling J.X., Chen M., Johnson R.D., Tominaga M., Wang C.Y., Gu J. TRPM8 mechanism of autonomic nerve response to cold in respiratory airway. Mol. Pain. 2008;(4):22. doi: 10.1186/1744-8069-4-22

29. Liu H., Liu Q., Hua L., Pan J. Inhibition of transient receptor potential melastatin 8 alleviates airway inflammation and remodeling in a murine model of asthma with cold air stimulus. Acta Biochim. Biophys. Sin. (Shanghai) 2018;50(5):499–506. doi: 10.1093/abbs/gmy033

30. Naumov D.E., Gassan D.A., Kilimichenko K.F., Afanasʹeva E.Yu., Sheludko E.G., Kolosov V.P. Peculiarities of TRPM8 receptor expression in the respiratory tract of asthma patients. Byulleten’ fiziologii i patologii dykhaniya = Bulletin of Physiology and Pathology of Respiration. 2018;(69):19–24 [In Russian]. doi: 10.12737/article_5b96073c5711b1.83866044

31. Naumov D.E., Kotova O.O., Gassan D.A., Afanas’eva E.Yu., Sheludko E.G. Correlation of cation channel TRPM8 gene expression with coldinduced airway hyperresponsiveness in asthma patients. Byulleten’ fiziologii i patologii dykhaniya = Bulletin of physiology and pathology of respiration. 2019;(72):33–38 [In Russian]. doi: 10.12737/article_5d09d6a0d75552.76525437

32. Brown R.H., Togias A. Measurement of intraindividual airway tone heterogeneity and its importance in asthma. J. Appl. Physiol. 2016;121(1):223–232. doi: 10.1152/japplphysiol.00545.2015

33. Svenningsen S.L., Eddy R., Capaldi D.P., Kjarsgaard M., Radford K., Parraga G., Nair P. Effect of anti-Th2 therapy on MRI ventilation heterogeneity in prednisone-dependent asthma. Am. J. Respir. Crit. Care Med. 2018;197:A6393.

34. Svenningsen S., Eddy R.L., Lim H., Nair P., Parraga G. Inflammatory and non-inflammatory contributions to ventilation heterogeneity in severe poorly-controlled asthmatics. Am. J. Respir. Crit. Care Med. 2017;195:A2665.


Review

Views: 297


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)