Preview

Сибирский научный медицинский журнал

Advanced search

The effect of silver-containing sorbent on red blood cells during hemosorption: an in vitro study

https://doi.org/10.18699/SSMJ20220503

Abstract

The aim of the study was to investigate the influence of the original porous silver–containing sorbent on the morphofunctional parameters of red blood cells during in vitro hemoperfusion. 
Material and methods. Donor blood was perfused through glass columns filled with a sorbent based on porous aluminum oxide, polydimethylsiloxane and silver nanoclusters and a sorbent without silver. The effect of a silver-containing sorbent on the change in morphofunctional parameters of red blood cells after perfusion through sorbents was determined by scanning flow cytometry. 
Results and their discussion. Due to the uniformity of the distribution of silver (0.1 %) over the sorbent granules, the parameters of the porous structure – the specific surface area and pore volume – practically do not change compared to the sorbent without silver. Morphological parameters of original donor blood and after hemoperfusion are within the norm. The functional parameters are also normal, although the introduction of silver in to the sorbent slightly increases the number of active band 3 (B3) proteins on erythrocyte membranes, both in comparison with the donor red cell mass as a control and in comparison with the sorbent without silver. There is also an increase in the ultimate extensibility of the erythrocyte membrane compared to the original blood (2.2 times) and the sorbent without silver (1.4 times). 
Conclusions. A sorbent modified with silver and a sorbent without silver does not have a damaging toxic effect on the morphofunctional parameters of blood under perfusion conditions. The mechanisms affecting the indicators of the ultimate extensibility of the erythrocyte membrane after blood perfusion through a silver-containing sorbent require further research.

About the Authors

L. N. Rachkovskaya
Recearch Institute of Clinical and Experimental Lymphology – Branch of the Institute of Cytology and Genetics of SB RAS
Russian Federation

Lubov N. Rachkovskaya, candidate of chemical sciences

630060, Novosibirsk, Timakov str., 2



A. A. Smagin
Recearch Institute of Clinical and Experimental Lymphology – Branch of the Institute of Cytology and Genetics of SB RAS
Russian Federation

Аlexander A. Smagin, doctor of medical sciences

630060, Novosibirsk, Timakov str., 2



V. V. Nimaev
Recearch Institute of Clinical and Experimental Lymphology – Branch of the Institute of Cytology and Genetics of SB RAS
Russian Federation

Vadim V. Nimaev, doctor of medical sciences

630060, Novosibirsk, Timakov str., 2



A. Yu. Demura
Recearch Institute of Clinical and Experimental Lymphology – Branch of the Institute of Cytology and Genetics of SB RAS
Russian Federation

Аlexander Yu. Demura

630060, Novosibirsk, Timakov str., 2



E. E. Rachkovsky
Recearch Institute of Clinical and Experimental Lymphology – Branch of the Institute of Cytology and Genetics of SB RAS
Russian Federation

Edmund E. Rachkovsky, candidate of chemical sciences

630060, Novosibirsk, Timakov str., 2



E. S. Yastrebova
Voevodsky Institute of Chemical Kinetics and Combustion of SB RAS
Russian Federation

Ekaterina S. Yastrebova

630090, Novosibirsk, Institutskaya str., 3 



V. P. Maltsev
Voevodsky Institute of Chemical Kinetics and Combustion of SB RAS
Russian Federation

Valery P. Maltsev, doctor of physical and mathematical sciences, professor

630090, Novosibirsk, Institutskaya str., 3 



M. A. Korolev
Recearch Institute of Clinical and Experimental Lymphology – Branch of the Institute of Cytology and Genetics of SB RAS
Russian Federation

Maksim A. Korolev, doctor of medical sciences

630060, Novosibirsk, Timakov str., 2



A. Yu. Letyagin
Recearch Institute of Clinical and Experimental Lymphology – Branch of the Institute of Cytology and Genetics of SB RAS
Russian Federation

Andrey Yu. Letyagin, doctor of medical sciences, professor

630060, Novosibirsk, Timakov str., 2



References

1. Перспективы использования препаратов наноструктурированного серебра для борьбы с инфекционными заболеваниями, включая COVID-19. Сиб. науч. мед. ж. 2021;41(5):4–15. doi: 10.18699/SSMJ20210501 Burmistrov V.A., Bogdanchikova N.E., Gusan A.O., Uraskulova B.B., Almanza-Reyes O., Alvarado-Vera M., Placencia-Lopez I., Pestryakov A.N., Rachkovskaya L.N., Letyagin A.Yu. Prospects for the use of nanostructured silver preparations for the control of infectious diseases, including COVID-19. Sibirskiy nauchnyy meditsinskiy zhurnal = Siberian Scientific Medical Journal. 2021; 41(5):4−15. [In Russian]. doi: 10.18699/SSMJ20210501

2. Nakamura K., Nakamura K. Antimicrobial coating compositions containing zeolite and silicates. Jpn. Kokai Tokkyo Koho. JP09, 100, 205 (Cl.A01N59/16), 1997.

3. Blagitko E.M., Burmistrov V.A., Kolesnikov A.P., Mikhailov Yu.I., Rodionov P.P. Silver in medicine. Novosibirsk: Nauka-tsentr, 2004. 250 c. [In Russian].

4. Popova T.V., Karabintseva N.O., Rachkovskaya L.N., Tolstikova T.G., Kotlyarova A.A., Letyagin A.Yu. The possibility of creating multifunctional silver-containing drugs with detoxifying effect. Farmatsiya i farmakologiya = Pharmacy and Pharmacology.2017;5(3):242–253. [In Russian]. doi:10/19163/2307-9266-2017-5-3-243-253

5. Khoroshilov S.E., Nikulin A.V. Detoxication in critical conditions: an insight into the scientific problem in the XXI century (review). Obshchaya reanimatologiya = General Reanimatology. 2017;13(5):85–108. [In Russian]. doi: 10.15360/1813-9779-217-5-85-108

6. Khodas M.Ya., Belkin A.L., Mosolova L.А., Povzhitkova M.S., Leonova S.F., Penkrak K.A., Grischenko M.N., Pyatnitskaya G.K. Hemoperfusion effect on oxygen carrying function of preserved donor blood and erythrocytic mass. Z. Exp. Chir. Transplant. Kunstliche Organe. 1989;22(2):92–96.

7. Greg S. Adsorption, specific surface area, porosity. Moscow: Mir, 1984. 310 p. [In Russian].

8. Nimaev V.V., Pivkina A.V., Shurlygina A.V., Rachkovskaya L.N., Smagin A.A., Yastrebova E.S., Rachkovsky E.E., Korolev M.A., Maltsev V.P., Letyagin A.Yu. New carbon-mineral sorbent based on aluminum oxide, polydimethylsiloxane and single-wall carbon nanotubes: assessment of the effect on erythrocytes in vitro. Bull. Exp. Biol. Med. 2022;172(10):478–482. doi: 10.47056/0365-9615-2021-172-10-495-500

9. Chernyshev A.V., Tarasov P.A., Semianov K.A., Nekrasov V.M., Hoekstra A.G., Maltsev V.P. Erythrocyte lysis in isotonic solution of ammonium chloride: Theoretical modeling and experimental verification. J. Theor. Biol. 2008;251(1):93–107. doi: 10.1016/j.jtbi.2007.10.016

10. Lin C.M., Wu D.T., Tsao H.K., Sheng Y.J. Membrane properties of swollen vesicles: growth, rupture, and fusion. Soft Matter. 2012;8(22):6139–6150. doi: 10.1039/C2SM25518A

11. Yastrebova E.S., Nekrasov V.M., Gilev K.V., Gisich A.V., Abubakirova O.A., Strokotov D.I., Chernyshev A.V., Karpenko A.A., Maltsev V.P. Erythrocyte lysis and angle-resolved light scattering measured by scanning flow cytometry result to 48 indices quantifying a gas exchange function of the human organism. Cytometry A. 2022. doi: 10.1002/cyto.a.24554

12. Pekelharing J.M., Hauss O., de Jonge R., Lokhoff J., Sodikromo J., Spaans M., Brouwer R., de Lathouder S., Hinzmann R. Haematology reference intervals for established and novel parameters in healthy adults. Sysmex Journal International. 2010;20(1):1–9.

13. Harris N., Kunicka J., Kratz A. The ADVIA 2120 Hematology System: Flow cytometry-based analysis of blood and body fluids in the routine hematology laboratory. Lab. Hematol. 2005;11(1):47–61. doi: 10.1532/LH96.04075

14. Chernyshova E.S., Zaikina Y.S., Tsvetovskaya G.A., Strokotov D.I., Yurkin M.A., Serebrennikova E.S., Volkov L., Maltsev V.P., Chernyshev A.V. Influence of magnesium sulfate on HCO3/Cl transmembrane exchange rate in human erythrocytes. J. Theor. Biol. 2016;393:194–202. doi: 10.1016/j.jtbi.2015.12.023


Review

Views: 358


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)