Age correlation of cerebral corpus callosum and brainstem area indicators
https://doi.org/10.18699/SSMJ20220309
Abstract
Since aging is characterized by morphofunctional changes in humans, longevity leads to an increase in age-associated features of their bodies. Aim of the study was to carry out a comparative analysis of the cerebral corpus callosum and brainstem area in the human adolescent and old age and determine the presence of their correlation. Material and methods. The work is based on magnetic resonance imaging study of 88 patients examined in the Department of Radiation Diagnostics. The patients were divided into two groups: the first group consisted of 44 adolescents (aged 17–21) and the second group consisted of 44 seniors (aged 75–88). The areas of the corpus callosum and brain stem were calculated in the sagittal projection along the midline. Results and discussion. Analysis of the study results indicates that there is a tendency to the prevalence of cerebral corpus callosum and brain stem area in men compared to the indices established in women (p > 0.05). A tendency to prevalence of the area of the corpus callosum in adolescents in comparison to representatives of senile age has been established, which was more pronounced in men (by 3.37 %, p > 0.05) than in women (by 0.75 %, p > 0.05). Brain stem area is less in old age than in adolescence: in men by 3.29 % (p < 0.01), in women by 3.52 % (p < 0.01). The direct high correlation between the cerebellar body area and brain stem area has been established. Conclusions. The obtained results of the in vivo comparative analysis of corpus callosum and brain stem area of the human brain in adolescence and old age add scientific knowledge about age-related anatomical features of the central nervous system departments in postnatal ontogenesis of humans.
About the Authors
A. A. BalandinRussian Federation
Anatoly A. Balandin, candidate of medical sciences
414099, Perm, Petropavlovskaya str., 26
G. S. Yurushbaeva
Russian Federation
Guzel S. Yurushbaeva
414099, Perm, Petropavlovskaya str., 26
I. A. Balandina
Russian Federation
Irina A. Balandina, doctor of medical sciences, professor
414099, Perm, Petropavlovskaya str., 26
References
1. Jung M., Ko W., Muhwava W., Choi Y., Kim H., Park Y.S., Jambere G.B., Cho Y. Mind the gaps: age and cause specific mortality and life expectancy in the older population of South Korea and Japan. BMC Public Health. 2020;20:819. doi: 10.1186/s12889-02008978-x
2. Fenelon A., Boudreaux M. Life and death in the american city: men’s life expectancy in 25 major american cities from 1990 to 2015. Demography. 2019;56(6):2349–2375. doi: 10.1007/s13524-01900821-2
3. Zhang Y., Wang Y., Chen N., Guo M., Wang X., Chen G., Li Y., Yang L., Li S., Yao Z., Hu B. Age-associated differences of modules and hubs in brain functional networks. Front. Aging Neurosci. 2021;12:607445. doi: 10.3389/fnagi.2020.607445
4. Noh B., Youm C., Lee M., Park H. Age-specific differences in gait domains and global cognitive function in older women: gait characteristics based on gait speed modification. PeerJ. 2020;16(8):e8820. doi: 10.7717/peerj.8820
5. Baybakov S.E., Gayvoronsky I.V., Gayvoronsky A.I. The comparative description of morphometrical characteristics of adult brain parameters in the period of mature age (according to the magnetic resonance imaging data). Vestnik Sankt-Peterburgskogo universiteta. Meditsina = Bulletin of Saint-Petersburg University. Medicine. 2009;(1):111–117. [In Russian].
6. Balandin A.A., Balandina I.A., Pankratov M.K. Effectiveness of treatment of elderly patients with traumatic brain injury complicated by subdural hematoma. Uspekhi gerontologii = Advances in Gerontology. 2021;34(3):461–465 [In Russian]. doi: 10.34922/ AE.2021.34.3.017
7. Bessonov I.S., Kuznetsov V.A., Gorbatenko E.A., Sapozhnikov S.S., Zyryanov I.P. Percutaneous coronary interventions for ST elevation myocardial infarction in different age groups. Sibirskiy nauchnyy meditsinskiy zhurnal =Siberian Scientific Medical Journal. 2021;41(2):56–65. [In Russian]. doi: 10.18699/ SSMJ20210208
8. Gabitova M.A., Krupenin P.M., Sokolova A.A., Napalkov D.A., Fomin V.V. «Fragility» as a predictor of bleedings in elderly patients with atrial fibrillation taking direct oral anticoagulants. Sibirskiy nauchnyy meditsinskiy zhurnal = Siberian Scientific Medical Journal. 2019;39(6):70–76. [In Russian]. doi: 10.15372/ SSMJ20190609
9. Edwards T.J., Sherr E.H., Barkovich J.A., Richards L.J. Clinical, genetic and imaging findings identify new causes for corpus callosum development syndromes. Brain. 2014;137(6):1579–1613. doi: 10.1093/ brain/awt358
10. Neal J.B., Filippi C.G., Mayeux R. Morphometric variability of neuroimaging features in children with agenesis of the corpus callosum. BMC Neurol. 2015;15:116. doi: 10.1186/s12883-015-0382-5
11. Ahmadvand A., Shahidi S.B., Talari H., Ghoreishi F.S., Mousavi G.A. Morphology of the corpus callosum and schizophrenia: A case-control study in Kashan, Iran. Electron. Physician. 2017;(10):5478–5486. doi: 10.19082/5478
12. Céline J.X., Perreault M.C. Influence of brain stem on axial and hindlimb spinal locomotor rhythm generating circuits of the neonatal mouse. Front. Neurosci. 2018;12:53. doi: 10.3389/fnins.2018.00053
13. Natalskaya N.Yu., Merinov A.V., Fedotov I.A. To the issue of geriatric ethics. Klinicheskaya gerontologiya = Clinical Gerontolology. 2009;15(12):41–43. [In Russian].
14. Biryukov A.N., Medvedeva Yu.I., Hazov P.D. Age and gender aspects of MRI-callosometry. Vestnik Sankt-Peterburgskoy meditsinskoy akademii poslediplomnogo obrazovaniya = Herald of North-Western State Medical University. 2011;3(4):59–63. [In Russian].
15. Zuev V.A., Mezentseva M.V., Shaposhnikova G.M. Gliosis as a trigger mechanism of the aging process of the mammalian brain. Mezhdunarodnyy akademicheskiy zhurnal Rossiyskoy akademii estestvennykh nauk = International Academic Journal of the Russian Academy of Natural Sciences. 2014;(4):9–22. [In Russian].
16. Hollville E., Romero S.E., Deshmukh M. Apoptotic cell death regulation in neurons. FEBS J. 2019;286(17):3276–3298. doi: 10.1111/febs.14970
17. Michael F., Aviva M.T., Vilmante B., Michael C., Guy C.B. Neuronal cell death. Physiol. Rev. 2018;98(2):813–880. doi: 10.1152/physrev.00011.2017
18. Anisimov V.N. Molecular and physiological mechanisms of aging. In 2 volumes. Saint-Petersburg: Nauka, 2008. 481 p. [In Russian].
19. Ivanov M.V., Kutukova K.A., Khudoerkov R.M. Morphochemical changes in the human striatum in aging. Uspekhi gerontologii =Advances in Gerontology. 2019;9:303–307. [In Russian]. doi: 10.1134/ S207905701903007X
20. Gustin S.M., Peck C.C., Wilcox S.L., Nash P.G., Murray G.M., Henderson L.A. Different pain, different brain: thalamic anatomy in neuropathic and non-neuropathic chronic pain syndromes. J. Neurosci. 2011;31(16):5956–5964. doi: 10.1523/JNEUROSCI.5980-10.2011
21. Huang S.Y., Fan Q., Machado N., Eloyan A., Bireley J.D., Russo A.W., Tobyne S.M., Patel K.R., Brewer K., Rapaport S.F., … Klawiter E.C. Corpus callosum axon diameter relates to cognitive impairment in multiple sclerosis. Ann. Clin. Transl. Neuro. 2019;6(5):882–892. doi: 10.1002/acn3.760
22. Nemirovich-Danchenko N.M., Khodanovich M.Yu. Telomerase gene editing in the neural stem cells in vivo as a possible new approach against brain aging. Genetika = Russian Journal of Genetics. 2020;56(4):387– 401. [In Russian]. doi: 10.31857/S0016675820040098
23. Schmidt-Hieber C., Jonas P., Bischofberger J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature. 2004;429(6988):184–187. doi: 10.1038/nature02553
24. Blasco M.A. Telomeres and human disease: Ageing, cancer and beyond. Nat. Rev. Genet. 2005;6(8):611–622. doi: 10.1038/nrg1656
25. Herbig U., Jobling W.A., Chen B.P.C., Chen D.J., Sedivy J.M. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21CIP1, but not p16INK4a. Mol. Cell. 2004;14(4):501–513. doi: 10.1016/s10972765(04)00256-4
26. Epel E.S., Blackburn E.H., Lin J., Dhabhar F.S., Adler N.E., Morrow J.D., Cawthon R.M. Accelerated telomere shortening in response to life stress. Proc. Natl Acad. Sci. USA. 2004;101(49):17312–17315. doi: 10.1073/pnas.0407162101
27. Tsygan V.N., Gurskaya O.E., Ilinsky N.S. Etiopathogenetic neuroreparative therapy of encephalopathies. Vestnik Rossiyskoy voyenno-meditsinskoy akademii = Bulletin of the Russian Military Medical Academy. 2018;(1):139–144. [In Russian].
28. Zimmerman B., Rypma B., Gratton G., Fabiani M. Age-related changes in cerebrovascular health and their effects on neural function and cognition: A comprehensive review. Psychophysiology. 2021;58(7):e13796. doi: 10.1111/psyp.13796
29. Shin T.H., Lee D.Y., Basith S., Manavalan B., Paik M.J., Rybinnik I., Mouradian M.M., Ahn J.H., Lee G. Metabolome changes in cerebral ischemia. Cells. 2020;9(7):1630. doi: 10.3390/cells9071630
30. She X., Lan B., Tian H., Tang B. Cross talk between ferroptosis and cerebral ischemia. Front. Neurosci. 2020;14:776. doi: 10.3389/fnins.2020.00776
31. Patra A., Singla R.K., Chaudhary P., Malhotra V. Morphometric analysis of the corpus callosum using cadaveric brain: an anatomical study. Asian J. Neurosurg. 2020;15(2);322–327. doi: 10.4103/ajns. AJNS_328_19
Review
For citations:
Balandin A.A., Yurushbaeva G.S., Balandina I.A. Age correlation of cerebral corpus callosum and brainstem area indicators. Сибирский научный медицинский журнал. 2022;42(3):70–75. (In Russ.) https://doi.org/10.18699/SSMJ20220309