Preview

Сибирский научный медицинский журнал

Advanced search

Body surface potential mapping in rats with stress-induce arterial hypertension

https://doi.org/10.18699/SSMJ20220307

Abstract

Studies on experimental animals allow us to approach the understanding of the mechanisms of changes in the electrical activity of the heart during morphofunctional rearrangements that occur as a result of the development of arterial hypertension (AH). Aim of the study was to investigate body surface potential mapping in young ISIAH rats with genetically determined stress-induced AH during ventricular depolarization. Material and methods. The study was carried out on 3-month-old ISIAH males (= 10) weighing 250–300 g. Body surface potential mapping was performed using 64 electrodes evenly distributed around the chest of the animal. Results. Significantly higher systolic blood pressure was shown in ISIAH rats compared to Wistar rats (203 ± 14 and 125 ± 5 mm Hg, respectively), as well as heart relative mass, thickness of the left ventricle, right ventricle, and interventricular septum were significantly higher compared to Wistar. During the period of ventricular depolarization, a shift of the zone of negative cardiopotentials to the left-lateral region of the chest is shown in the period corresponding to the time the positive extremum reaches its maximum value in ISIAH rats compared to Wistar. An earlier time of formation, a significantly longer time to achieve the first and second inversion of cardiopotentials, a later time for the positive and negative extrema to reach their maximum values, a greater amplitude of the absolute value of the negative extremum, and a significantly longer total ventricular duration in ISIAH rats compared to Wistar rats were shown. Conclusions. The study give perspective to the use of body surface potential mapping for diagnosing the initial stages of the formation of myocardial hypertrophy in AH.

About the Authors

O. V. Suslonova
Federal Research Center Komi Scientific Center of UB of RAS
Russian Federation

Olga V. Suslonova

167982, Syktyvkar, Kommunisticheskaya str., 24



Yu. V. Shorokhov
A.S. Pushkin Gymnasium
Russian Federation

Yurij V. Shorokhov

167000, Syktyvkar, Sovetskaya str., 14



S. L. Smirnova
Federal Research Center Komi Scientific Center of UB of RAS
Russian Federation

Svetlana L. Smirnova, candidate of biological sciences

167982, Syktyvkar, Kommunisticheskaya str., 24



I. M. Roshchevskaya
Federal Research Center Komi Scientific Center of UB of RAS
Russian Federation

Irina M. Roshchevskaya, doctor of biological science, corresponding member RAS

167982, Syktyvkar, Kommunisticheskaya str., 24



References

1. Afzal M.R., Zanova S., Mohamed O., Vohamed-Osman A., Kalbfleisch S.J. Hypertension and arrhythmias. Heart Fail. Clin. 2019;15(4):543–550. doi: 10.1016/j.hfc.2019.06.011

2. Bacharova L., Schocken D., Estes E.H., Strauaa D. The role of ECG in the diagnosis of left ventricular hypertrophy. Curr. Cardiol. Rev. 2014;10(3):257–261. doi: 10.2174/1573403X106661405141103220

3. Bergquist J., Rupp L., Zenger B., Brundage J., Busatto A., MacLeod R.S. Body surface potential mapping: contemporary applications and future perspectives. Hearts. 2021;2(4):514–542. doi: 10.3390/ hearts2040040

4. Krandycheva V.V., Kharin S.N., Shmakov D.N., Roshchevskaya I.M. Сardiac electric field on the body surface in rats with left ventricular hypertrophy caused by experimental renovascular hypertension. Rossiyskiy fiziologicheskiy zhurnal imeni Ivana Mikhaylovicha Sechenova = Russian Journal of Physiology. 2005;91(10):1168–1175. [In Russian].

5. Suslonova O.V., Smirnova S.L., Roshchevskaya I.M. Body surface potential mapping in hypertensive rat during ventricular depolarization. Sovremennye problemy nauki i obrazovaniya = Modern Problems of Science and Education. 2018;3:57. [In Russian]. doi:10.17513/spno.27663

6. Ushakov A.V., Ivanchenko V.S., Gagarina A.A. Psychological stress in pathogenesis of essential hypertension. Curr. Hypertens. Rev. 2016;12(3):203–214. doi: 10.2174/1573402112666161230121622

7. Markel A.L. Development of a new strain of rats with inherited stress-induced arterial hypertension. In: Genetic Hypertension. Ed. J. Sassard. Colloque INSERM, John Libbey Eurotext Ltd. 1992;218:405-407.

8. Suslonova O.V., Roshchevskaya I.M., Rasputina A.A. Morphometry of the heart ventricles in NISAG rats during the early postnatal ontogenesis. Izvestiya Komi nauchnogo tsentra Ural’skogo otdeleniya Rossiyskoy akademii nauk = Proceedings of Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences. 2016;(1):45–50. [In Russian].

9. Cuspidi C., Sala C., Muiesan M.L., De Luca N., Schillaci G., Working Group on Heart, Hypertension of the Italian Society of Hypertension. Right ventricular hypertrophy in systemic hypertension: an updated review of clinical studies. J. Hypertens. 2013:31(5):858– 865. doi: 10.1097/HJH.0b013e32835fl17e5

10. Hanboly N.H. Right ventricle morphology and function in systemic hypertension. Nig. J. Cardiol. 2016;13(1):11–17. doi: 10.4103/0189-7969.173854

11. Smolyuk L.T., Kuznetsov D.A., Lisin R.V., Mukhlynina E.A., Markel A.L., Protsenko Yu.L. Мorphological and viscoelastic properties of ISIAH rats myocardium during the development of arterial hypertension. Rossiyskiy fiziologicheskiy zhurnal imeni Ivana Mikhaylovicha Sechenova = Russian Journal of Physiology. 2015;101(5):559–571. [In Russian].

12. Tadic M., Cuspidi C., Bombelli M., Grassi G. Right heart remodeling induced by arterial hypertension: Could strain assessment be helpful. J. Clin. Hypertens. 2018;20(2):400–407. doi: 10.1111/jch.13186

13. Roshchevskaya I.M. Cardioelectric field of warm-blooded animals and humans. Saint-Petersburg: Nauka, 250 p. [In Russian].

14. Suslonova O.V., Smirnova S.L., Rohschevskaya I.M. Cardiac body surface potentials in rats with experimental pulmonary hypertension during ventricular depolarization. Byulleten’ eksperimental’noy biologii i meditsiny = Bulletin of Experimental Biology and Medicine. 2016;162(7):7–10. doi: 10.1007/s10517-016-3531-y

15. Suslonova O.V., Smirnova S.L., Roshchevskaya I.M. Сardioelectric field on the body surface of Wistar rats during ventricular depolarization in aging. Izvestiya Komi nauchnogo tsentra Ural’skogo otdeleniya Rossiyskoy akademii nauk = Proceedings of Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences. 2017;(2):56–60. [In Russian].

16. Doris P.A. Genetics of hypertension: an assessment of progress in the spontaneously hypertensive rat. Physiol. Genomics. 2017;49(11):601–617. doi: 10.1152/physiolgenomics.00065.2017

17. Antonov Е.V., Alexandrovich Yu.V., Seryapina A.A., Klimov L.O., Markel A.L. Stress and arterial hypertension: ISIAH rat strain. Vavilovskiy zhurnal genetiki i selektsii = Vavilov Journal of Genetics and Breeding. 2015;19(4):455–459. [In Russian]. doi: 10.18699/VJ15.060

18. Moura E., Costa P., Moura D., Guimaraes S., Vieira-Coelho M.A. Decreased tyrosine hydroxylase activity in the adrenals of spontaneously hypertensive rats. Life Sci. 2005;76(25):2953–2964. doi: 10.1016/j. lfs.2004.11.017

19. Dubinina A.D., Antonov E.V., Fedoseeva L.A., Pivovarova Е.N., Markel A.L., Ivanova L.N. Renin-angiotensin-aldosterone system in ISIAH rats with stress-induced arterial hypertension. Vavilovskiy zhurnal genetiki i selektsii = Vavilov Journal of Genetics and Breeding. 2016;20(6):954–958. [In Russian]. doi: 10.18699/VJ16.216

20. Campbell D.J., Duncan A.M., Kladis A., Harrap S.B. Angiotensin peptides in spontaneously hypertensive and normotensive Donryu rats. Hypertension. 1995;25(5):928–934. doi: 10.1161/01.HYP.25.5.928


Review

Views: 327


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)