Influence of trimetazidine on myocardium energy balance during chemotherapy with doxorubicin and cyclophosphamide
https://doi.org/10.18699/SSMJ20220304
Abstract
Aim of the study was to assess the degree of myocardial ischemia in rats on chronic in vivo model, with a simultaneous assessment of justification for the use of trimetazidine. Material and methods. The object of the study was 120 male inbred Wistar rats, randomly divided into 4 equal groups: group 1 – control (administration of 0.9% sodium chloride solution 3 times a week); group 2 – simulation of the AC chemotherapy regimen by intraperitoneal administration of doxorubicin hydrochloride at a single dose of 2.5 mg/kg and cyclophosphamide monohydrate at a single dose of 25 mg/kg 3 times a week; group 3 – simulation of the AC chemotherapy regimen with additional administration of trimetazidine dihydrochloride daily by intragastric gavage at a single dose of 3.0 mg/kg; group 4 – administration of trimetazidine dihydrochloride. The study has been carried out for two weeks. An Olympus IX51 microscope was used to assess the changes. Staining was carried out by the HBFP method (hematoxylin + basic fuchsin + picronic acid). Results and discussion. In group 2, on the background of AC chemotherapy, the level of fuchsinophilia in myocardial tissue was 87.2 and 90.9 % higher (p < 0.05) than in groups 1 and 4, respectively, the specific area of damage was 170.8 and 167. 5 %, respectively (p < 0.05). In group 3, the severity of fuchsinophilia and the specific area of myocardial damage were statistically significantly less (by 26.3 and 36.5 %, p < 0.05) than in group 2. Conclusions. Trimetazidine is a pathogenetically effective drug that protects the myocardium from damage associated with AC chemotherapy.
About the Author
A. A. AvagimyanArmenia
Ashot A. Avagimyan
0025, Yerevan, Koryun str., 2a
117418, Moscow, Tsyurupа str., 3
References
1. Avagimyan A., Kakturskiy L., Heshmat-Ghahdarijani K., Pogosova N., Sarrafzadegan N. Anthracycline associated disturbances of cardiovascular homeostasis. Curr. Probl. Cardiol. 2021;47(5):100909. doi: 10.1016/j.cpcardiol.2021.100909
2. López-Sendón J., Álvarez-Ortega C., Auñon Z.P., Soto B.A., Lyon A.R., Farmakis D., Cardinale D., Albendea M.C., Batlle J.F., Rodríguez I.R., … Fernández T.L. Classification, prevalence, and outcomes of anticancer therapy-induced cardiotoxicity: the CARDIO-TOX registry. Eur. Heart. J. 2020;41(18):1720–1729. doi: 10.1093/eurheartj/ehaa006
3. Vasyuk Yu.A., Gendlin G.E., Emelina E.I., Shupenina E.Yu., Ballyuzek M.F., Barinova I.V., Vitsenya M.V., Davydkin I.L., Dundua D.P., Duplyakov D.V., … Belenkov Yu.N. Сonsensus statement of Russian experts on the prevention, diagnosis and treatment of cardiotoxicity of anticancer therapy. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2021;26(9):4703. [In Russian]. doi: 10.15829/15604071-2021-4703
4. Kolak A., Kamińska M., Sygit K., Budny A., Surdyka D., Kukiełka-Budny B., Burdan F. Primary and secondary prevention of breast cancer. Ann. Agric. Environ. Med. 2017;24(4):549–553. doi: 10.26444/ aaem/75943
5. Avagimyan A.A., Mkrtchyan L.G., Kononchuk N.B., Kaktursky L.V., Agati L. Chemotherapy as a possible trigger for the myocardial lipomatosis development. Arterial’naya gipertenziya = Arterial Hypertension. 2021;27(6):706–712. [In Russian]. doi: 10.18705/1607-419X-2021-27-6-706-712
6. Hu C., Zhang X., Song P., Yuan Y.P., Kong C.Y., Wu H.M., Xu S.C., Ma Z.G., Tang Q.Z. Meteorin-like protein attenuates doxorubicin-induced cardiotoxicity via activating cAMP/PKA/SIRT1 pathway. Redox Biol. 2020;37:101747. doi: 10.1016/j.redox.2020.101747
7. Zhang Y.Y., Yi M., Huang Y.P. Oxymatrine ameliorates doxorubicin-induced cardiotoxicity in rats. Cell. Physiol. Biochem. 2017;43(2):626–635. doi: 10.1159/000480471
8. Wu Y.Z., Zhang L., Wu Z.X., Shan T.T., Xiong C. berberine ameliorates doxorubicin-induced cardiotoxicity via a SIRT1/p66Shc-mediated pathway. Oxid. Med. Cell. Longev. 2019;2019:2150394. doi: 10.1155/2019/2150394
9. ZINECARD® (dexrazoxane) for injection. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/020212s017lbl.pdf
10. Savene, INN-dexrazoxane. Available at: https://www.ema.europa.eu/en/documents/product-information/savene-epar-product-information_en.pdf
11. Kochetkova I.V., Chernykh T.M., Panyushkina G.M. An experience of trimetazidine usage in comorbidity. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2018;(3):37–42. [In Russian]. doi: 10.15829/1560-4071-2018-3-37-4
12. Russian Society of Cardiology (RSC). 2020 Clinical practice guidelines for Stable coronary artery diseasese. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2020;25(11):4706. [In Russian]. doi:10.15829/1560-40712020-4076
13. Knuuti J., Wijns W., Saraste A., Capodanno D., Barbato E., Funck-Brentano C., Prescott E., Storey R.F., Deaton C., Cuisset T., … ESC Scientific Document Group. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020;41(3):407–477. doi: 10.1093/eurheartj/ehz425
14. Sheibani M., Nezamoleslami S., FaghirGhanesefat H., Emami A.H., Dehpour A.R. Cardioprotective effects of dapsone against doxorubicin-induced cardiotoxicity in rats. Cancer Chemother. Pharmacol. 2020;85(3):563–571. doi: 10.1007/s00280-019-04019-6
15. Omole J.G., Ayoka O.A., Alabi Q.K., Adefisayo M.A., Asafa M.A., Olubunmi B.O., Fadeyi B.A. Protective effect of kolaviron on cyclophosphamide-induced cardiac toxicity in rats. J. Evid. Based Integr. Med. 2018;23:2156587218757649. doi: 10.1177/2156587218757649
16. Albengres E., Tillement J., Le Louet H., Morin D. Trimetazidine: experimental and clinical update review. Cardiovascular Drug Review. 1998;16(4):359– 390.
17. Caetano G., Fronza M., Leite M., Gomes A., Frade M.A. Comparison of collagen content in skin wounds evaluated by biochemical assay and by computer-aided histomorphometric analysis. Pharm. Biol. 2016;54(11):2555–2559. doi: 10.3109/13880209.2016.1170861
18. Huang Y., Pan Y., Guo S., Wang J.Y., Wan D.F., Chen T.R., Yuan J.Q. Comparison of myocardial ischemic/hypoxic staining techniques for evaluating the alleviation of exhaustive exercise-induced myocardial injury by exercise preconditioning. J. Mol. Histol. 2021;52(2):373–383. doi: 10.1007/s10735-02109958-0
19. Divoky L., Maran A., Ramu B. Gender differences in ischemic cardiomyopathy. Curr. Atheroscler. Rep. 2018;20(10):50. doi: 10.1007/s11883-018-0750-x
20. Razeghian-Jahromi I., Matta A.G., Canitrot R., Zibaeenezhad M.J., Razmkhah M., Safari A., Nader V., Roncalli J. Surfing the clinical trials of mesenchymal stem cell therapy in ischemic cardiomyopathy. Stem Cell Res. Ther. 2021;12(1):361. doi: 10.1186/s13287021-02443-1
21. Guo Y., Nong Y., Li Q., Tomlin A., Kahlon A., Gumpert A., Slezak J., Zhu X., Bolli R. Comparison of one and three intraventricular injections of cardiac progenitor cells in a murine model of chronic ischemic cardiomyopathy. Stem Cell Rev. Rep. 2021;17(2):604– 615. doi: 10.1007/s12015-020-10063-0
22. Avagimyan A., Kakturskiy L. The impact of trimetazidine on the anthropometric parameters of doxorubicin-cyclophosphamide mode in chemotherapy-induced heart alteration. Georgian Med. News. 2022;(322):158–161.
23. Avagimyan A.A., Mkrtchyan L.H., Gevorkyan A.A., Kononchuk N.B., Kakturskiy L.V., Djndoyan Z.T. Relationship between chemotherapy and atrial fibrillation: clinical case. Ratsional’naya farmakoterapiya v kardiologii = Rational Pharmacotherapy in Cardiology. 2021;17(5):785–791. [In Russian].doi: 10.20996/1819-6446-2021-10-17
Review
For citations:
Avagimyan A.A. Influence of trimetazidine on myocardium energy balance during chemotherapy with doxorubicin and cyclophosphamide. Сибирский научный медицинский журнал. 2022;42(3):41–46. (In Russ.) https://doi.org/10.18699/SSMJ20220304