Neuroinflammation and сhemotherapy-induced peripheral neuropathy
https://doi.org/10.18699/SSMJ20220201
Abstract
Neurotoxicity is one of the common side effects of anticancer chemotherapy. This pathology has a detectability of 38–90%. In some cases, it causes not only a significant decrease of life quality but also decrease of dose of cytostatics. Therefore, the tasks of early diagnosis, prevention and treatment of neurotoxicity are very relevant. Sensors underlying detection, especially neuroinflammation processes, are needed to develop an effective therapy for chemotherapy-induced neurotoxicity. The purpose of this topic is to study the results of chemotherapy studies on changes in the activity of proinflammatory cytokines. In this regard, the study of behavioral societies in neuropathic pain in animal models is of great importance. It was revealed that various manifestations of inflammation of pro-inflammatory cytokines, chemokines, damage to the dorsal ganglion or distal nerve endings are increasingly being detected. Detection of chemically induced peripheral neuropathy using animal models is necessary for in-depth identification of the cause-and-effect mechanisms of its development and selection of new, more effective methods of treatment.
About the Authors
P. I. PilipenkoRussian Federation
doctor of medical sciences, professor
630091, Novosibirsk, Krasny ave., 52
630117, Novosibirsk, Timakov str., 2
V. E. Voytsitsky
Russian Federation
doctor of medical sciences, professor
630091, Novosibirsk, Krasny ave., 52
Yu. A. Dobresko
Russian Federation
630091, Novosibirsk, Krasny ave., 52
630117, Novosibirsk, Timakov str., 2
References
1. Park S.B., Goldstein D., Krishnan A.V., Lin C.S., Friedlander M.L., Cassidy J., Koltzenburg M., Kiernan M.C. Chemotherapy-induced peripheral neurotoxicity: a critical analysis. CA Cancer J. Clin. 2013;63(6):419–437. doi: 10.3322/caac.21204
2. Kerckhove N., Collin A., Condé S., Chaleteix C., Pezet D., Balayssac D. Long-term effects, pathophysiological mechanisms, and risk factors of chemotherapy-induced peripheral neuropathies: a comprehensive literature review. Front. Pharmacol. 2017;8:86. doi: 10.3389/fphar.2017.00086
3. Balayssac D., Ferrier J., Descoeur J., Ling B., Pezet D., Eschalier A., Authier N. Chemotherapy-induced peripheral neuropathies: from clinical relevance to preclinical evidence. Expert Opin. Drug Saf. 2011;10(3):407–417. doi: 10.1517/14740338.2011.543417
4. Wilkes G. Peripheral neuropathy related to chemotherapy. Semin. Oncol. Nurs. 2007;23(3):162–173. doi: 10.1016/j.soncn.2007.05.001
5. Kerckhove N., Collin A., Condé S., Chaleteix C., Pezet D., Balayssac D., Guastella V. Neuropathies périphériques chimio-induites : symptomatologie et épidémiologie. Bull. Cancer. 2018;105(11):1020–1032. doi: 10.1016/j.bulcan.2018.07.009
6. Seretny M., Currie G.L., Sena E.S., Ramnarine S., Grant R., MacLeod M.R., Colvin L.A., Fallon M. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Pain. 2014;155(12):2461–2470. doi: 10.1016/j.pain.2014.09.020
7. Wang X.M., Lehky T.J., Brell J.M., Dorsey S.G. Discovering cytokines as targets for chemotherapy-induced painful peripheral neuropathy. Cytokine. 2012;59(1):3–9. doi: 10.1016/j.cyto.2012.03.027
8. Scholz J., Woolf C.J. The neuropathic pain triad: neurons, immune cells and glia. Nat. Neurosci. 2007;10(11):1361–1368. doi: 10.1038/nn1992
9. Gornstein E., Schwarz T.L. The paradox of paclitaxel neurotoxicity: Mechanisms and unanswered questions. Neuropharmacology. 2014;76(A):175–183. doi: 10.1016/j.neuropharm.2013.08.016
10. Argyriou A.A., Bruna J., Marmiroli P., Cavaletti G. Chemotherapy-induced peripheral neurotoxicity (CIPN): an update. Crit. Rev. Oncol. Hematol. 2012;82(1):51–77. doi: 10.1016/j.critrevonc.2011.04.012
11. Boyette-Davis J., Xin W., Zhang H., Dougherty P.M. Intraepidermal nerve fiber loss corresponds to the development of taxol-induced hyperalgesia and can be prevented by treatment with minocycline. Pain. 2011;152(2):308–313. doi: 10.1016/j.pain.2010.10.030
12. LaPointe N.E., Morfini G., Brady S.T., Feinstein S.C., Wilson L., Jordan M.A. Effects of eribulin, vincristine, paclitaxel and ixabepilone on fast axonal transport and kinesin-1 driven microtubule gliding: implications for chemotherapy-induced peripheral neuropathy. Neurotoxicology. 2013; 37, 231–239. doi: 10.1016/j.neuro.2013.05.008
13. Loprinzi C.L., Reeves B.N., Dakhil S.R., Sloan J.A., Wolf S.L., Burger K.N., Kamal A., LeLindqwister N.A., Soori G.S., Jaslowski A.J., Novotny P.J., Lachance D.H. Natural history of paclitaxel-associated acute pain syndrome: prospective cohort study NCCTG N08C1. J. Clin. Oncol. 2011 10;29(11):1472–1478. doi: 10.1200/JCO.2010.33.0308
14. Dina O.A., Chen X., Reichling D., Levine J.D. Role of protein kinase Cepsilon and protein kinase A in a model of paclitaxel-induced painful peripheral neuropathy in the rat. Neuroscience. 2001;108(3):507–515. doi: 10.1016/s0306-4522(01)00425-0
15. Peters C.M., Jimenez-Andrade J.M., Jonas B.M., Sevcik M.A., Koewler N.J., Ghilardi J.R., Wong G.Y., Mantyh P.W. Intravenous paclitaxel administration in the rat induces a peripheral sensory neuropathy characterized by macrophage infiltration and injury to sensory neurons and their supporting cells. Exp. Neurol. 2007;203(1):42–54. doi: 10.1016/j.expneurol.2006.07.022
16. Peters C.M., Jimenez-Andrade J.M., Kuskowski M.A., Ghilardi J.R., Mantyh P.W. An evolving cellular pathology occurs in dorsal root ganglia, peripheral nerve and spinal cord following intravenous administration of paclitaxel in the rat. Brain Res. 2007;1168:46–59. doi: 10.1016/j.brainres.2007.06.066
17. Holland S.D., Ramer L.M., McMahon S.B., Denk F., Ramer M.S. An ATF3-CreERT2 Knock-in mouse for axotomy-induced genetic editing: proof of principle. eNeuro. 2019;6(2):ENEURO.0025-19.2019. doi: 10.1523/ENEURO.0025-19.2019
18. Brandolini L., d’Angelo M., Antonosante A., Allegretti M., Cimini A. Chemokine signaling in chemotherapy-induced neuropathic pain. Int. J. Mol. Sci. 2019;20(12):2904. doi: 10.3390/ijms20122904
19. Lees J.G., Makker P.G., Tonkin R.S., Abdulla M., Park S.B., Goldstein D., Moalem-Taylor G. Immune-mediated processes implicated in chemotherapy-induced peripheral neuropathy. Eur. J. Cancer. 2017;73:22–29. doi: 10.1016/j.ejca.2016.12.006
20. Javeed A., Ashraf M., Riaz A., Ghafoor A., Afzal S., Mukhtar M.M. Paclitaxel and immune system. Eur. J. Pharm. Sci. 2009;38(4):283–290. doi: 10.1016/j.ejps.2009.08.009
21. Warwick R.A., Hanani M. The contribution of satellite glial cells to chemotherapy-induced neuropathic pain. Eur. J. Pain. 2013;17(4):571–580. doi: 10.1002/j.1532-2149.2012.00219.x
22. Fumagalli G., Monza L., Cavaletti G., Rigolio R., Meregalli C. Neuroinflammatory process involved in different preclinical models of chemotherapy-induced peripheral neuropathy. Front. Immunol. 2021;11:626687. doi: 10.3389/fimmu.2020.626687
23. Jessen K.R., Mirsky R. The success and failure of the schwann cell response to nerve injury. Front. Cell Neurosci. 2019;13:33. doi: 10.3389/fncel.2019.00033
24. Bolin L.M., Verity A.N., Silver J.E., Shooter E.M., Abrams J.S. Interleukin-6 production by Schwann cells and induction in sciatic nerve injury. J. Neurochem. 1995;64(2):850–858. doi: 10.1046/j.1471-4159.1995.64020850.x
25. Muja N., DeVries G.H. Prostaglandin E(2) and 6-keto-prostaglandin F(1alpha) production is elevated following traumatic injury to sciatic nerve. Glia. 2004;46(2):116–129. doi: 10.1002/glia.10349
26. Shamash S., Reichert F., Rotshenker S. The cytokine network of Wallerian degeneration: tumor necrosis factor-alpha, interleukin-1alpha, and interleukin-1beta. J. Neurosci. 2002;22(8):3052–3060. doi: 10.1523/JNEUROSCI.22-08-03052.2002
27. Gao Y.J., Ji R.R. Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol. Ther. 2010;126(1):56–68. doi: 10.1016/j.pharmthera.2010.01.002
28. Milligan E., Zapata V., Schoeniger D., Chacur M., Green P., Poole S., Martin D., Maier S.F., Watkins L.R. An initial investigation of spinal mechanisms underlying pain enhancement induced by fractalkine, a neuronally released chemokine. Eur. J. Neurosci. 2005;22(11):2775–2782. doi: 10.1111/j.1460-9568.2005.04470.x
29. Leo M., Schmitt L.I., Kutritz A., Kleinschnitz C., Hagenacker T. Cisplatin-induced activation and functional modulation of satellite glial cells lead to cytokine-mediated modulation of sensory neuron excitability. Exp. Neurol. 2021;341:113695. doi: 10.1016/j.expneurol.2021.113695
30. Zajączkowska R., Kocot-Kępska M., Leppert W., Wrzosek A., Mika J., Wordliczek J. Mechanisms of chemotherapy-induced peripheral neuropathy. Int. J. Mol. Sci. 2019;20(6):1451. doi: 10.3390/ijms20061451
31. da Costa R., Passos G.F., Quintão N.L.M., Fernandes E.S., Maia J.R., Campos M.M., Calixto J.B. Taxane-induced neurotoxicity: Pathophysiology and therapeutic perspectives. Br. J. Pharmacol. 2020;177(14):3127–3146. doi: 10.1111/bph.15086
32. Sh Q., Cai X., Shi G., Lv X., Yu J., Wang F. Interleukin-4 protects from chemotherapy-induced peripheral neuropathy in mice modal via the stimulation of IL-4/STAT6 signaling. Acta Cir. Bras. 2018;33(6):491–498. doi: 10.1590/s0102-865020180060000003
33. Singh G., Singh A., Singh P., Bhatti R. Bergapten ameliorates vincristine-induced peripheral neuropathy by inhibition of inflammatory cytokines and NFκB signaling. ACS Chem. Neurosci. 2019;10(6):3008–3017. doi: 10.1021/acschemneuro.9b00206
34. Burmeister A.R., Johnson M.B., Marriott I. Murine astrocytes are responsive to the pro-inflammatory effects of IL-20. Neurosci. Lett. 2019;708:134334. doi: 10.1016/j.neulet.2019.134334
35. Chen L.H., Yeh Y.M., Chen Y.F., Hsu Y.H., Wang H.H., Lin P.C., Chang L.Y., Lin C.K., Chang M.S., Shen M.R. Targeting interleukin-20 alleviates paclitaxel-induced peripheral neuropathy. Pain. 2020;161(6):1237–1254. doi: 10.1097/j.pain.0000000000001831
36. Meregalli C., Monza L., Chiorazzi A., Scali C., Guarnieri C., Fumagalli G., Alberti P., Pozzi E., Canta A., Ballarini E., … Marmiroli P. Human intravenous immunoglobulin alleviates neuropathic symptoms in a rat model of paclitaxel-induced peripheral neurotoxicity. Int. J. Mol. Sci. 2021;22(3):1058. doi: 10.3390/ijms22031058
37. Zhang H., Li Y., de Carvalho-Barbosa M., Kavelaars A., Heijnen C.J., Albrecht P.J., Dougherty P.M. Dorsal root ganglion infiltration by macrophages contributes to paclitaxel chemotherapy-induced peripheral neuropathy. J. Pain. 2016;17(7):775–786. doi: 10.1016/j.jpain.2016.02.011
38. Navia-Pelaez J.M., Choi S.H., Capettini S.A.L., Xia Y., Gonen A., Agatisa-Boyle C., Delay .L, dos Santos G.G., Catroli G.F., Kim J., … Miller Y.I. Normalization of cholesterol metabolism in spinal microglia alleviates neuropathic pain. J. Exp. Med. 2021;218(7):e20202059. doi: 10.1084/jem.20202059
Review
For citations:
Pilipenko P.I., Voytsitsky V.E., Dobresko Yu.A. Neuroinflammation and сhemotherapy-induced peripheral neuropathy. Сибирский научный медицинский журнал. 2022;42(2):4-9. (In Russ.) https://doi.org/10.18699/SSMJ20220201