Rising of intracellular NAD+ level and oppositely directed changes in CD38 expression in hippocampal cells in experimental Alzheimer’s disease
https://doi.org/10.18699/SSMJ20210505
Abstract
The aim of the study was to assess the level of NAD+ in the brain of mice treated with beta-amyloid (Aβ), as well as to determine the activity of ADP-ribosyl cyclase/CD38 and the number of CD38-immunopositive neurons, astrocytes and endothelial cells. Material and methods. The Alzheimer’s disease model was reproduced by intrahippocampal administration of Aβ to C57BL/6 mice. Determination of the NAD+ level in the extracellular fluid of the brain and in the hippocampal tissue was carried out by spectrophotometric analysis. Evaluation of the enzymatic activity of ADP-ribosyl cyclase / CD38 was carried out by the fluorimetric method, determination of the number of CD38-immunopositive cells by the immunohistochemistry method. Results and discussion. The level of NAD+ was significantly increased in the hippocampal tissue in mice after administration of Aβ, while the level of extracellular NAD+ did not change. The activity of ADP-ribosyl cyclase / CD38 in the hippocampal tissue did not change, but the number of CD38-immunopositive neurons decreased, and the number of CD38+ endothelial cells increased in the hippocampus of mice after administration of Aβ. Conclusion. Opposite changes in the expression of ADP-ribosyl cyclase / CD38 in neurons and endotheliocytes correspond to different metabolic states of these types of cells and, along with an increased intracellular pool of NAD+ in experimental Alzheimer’s disease, reflect an adaptive stress response to Aβ administration.
About the Authors
A. A. SemenovaRussian Federation
Alina A. Semenova, candidate of biological sciences
660022, Krasnoyarsk, Partisan Zheleznyak str., 1
Ya. V. Gorina
Russian Federation
Yana V. Gorina, candidate of pharmaceutical sciences
660022, Krasnoyarsk, Partisan Zheleznyak str., 1
E. D. Khilazheva
Russian Federation
Elena D. Khilazheva
660022, Krasnoyarsk, Partisan Zheleznyak str., 1
E. V. Kharitonova
Russian Federation
Ekaterina V. Kharitonova, candidate of pharmaceutical sciences
660022, Krasnoyarsk, Partisan Zheleznyak str., 1
A. B. Salmina
Russian Federation
Alla B. Salmina, doctor of medical sciences, professor
660022, Krasnoyarsk, Partisan Zheleznyak str., 1;
125367, Moscow, Volokolamskoe highway, 80
References
1. Kurakin A., Bredesen D.E. Alzheimer’s disease as a systems network disorder: chronic stress/dyshomeostasis, innate immunity, and genetics. Aging (Albany NY). 2020; 12 (18): 17815–17844. doi: 10.18632/aging.103883
2. Fernandez-Fernandez S., Almeida A., Bolaños J.P. Antioxidant and bioenergetic coupling between neurons and astrocytes. Biochem. J. 2012; 443 (1): 3–11. doi: 10.1042/BJ20111943
3. Kerr J.S., Adriaanse B.A., Greig N.H., Mattson M.P., Cader M.Z., Bohr V.A., Fang E.F.. Mitophagy and Alzheimer’s disease: cellular and molecular mechanisms. Trends Neurosci. 2017; 40 (3): 151–166. doi: 10.1016/j.tins.2017.01.002
4. Rose J., Brian C., Woods J., Pappa A., Panayiotidis M.I., Powers R., Franco R. Mitochondrial dysfunction in glial cells: Implications for neuronal homeostasis and survival. Toxicology. 2017; 391: 109–115. doi: 10.1016/j.tox.2017.06.011
5. Dong Y., Brewer G.J. Global metabolic shifts in age and alzheimer’s disease mouse brains pivot at NAD+/NADH redox sites. J. Alzheimers Dis. 2019; 71 (1): 119–140. doi: 10.3233/JAD-190408
6. Katsyuba E., Romani M., Hofer D., Auwerx J. NAD+ homeostasis in health and disease. Nat. Metab. 2020; 2 (1): 9–31. doi: 10.1038/s42255-019-0161-5
7. Camacho-Pereira J., Tarragó M.G., Chini C.C.S., Nin V., Escande C., Warner G.M., Puranik A.S., Schoon R.A., Reid J.M., Galina A., Chini E.N. CD38 dictates age-related NAD decline and mitochondrial dysfunction through an sirt3-dependent mechanism. Cell Metab. 2016; 23 (6): 1127–1139. doi: 10.1016/j.cmet.2016.05.006
8. Chini E.N. CD38 as a regulator of cellular NAD: a novel potential pharmacological target for metabolic conditions. Curr. Pharm. Des. 2009; 15 (1): 57–63. doi: 10.2174/138161209787185788
9. Horenstein A.L., Faini A.C., Morandi F., Bracci C., Lanza F., Giuliani N., Paulus A., Malavasi F. The circular life of human cd38: from basic science to clinics and back. Molecules. 2020; 25 (20): 4844. doi: 10.3390/molecules25204844
10. Salmina A.B., Inzhutova A.I., Morgun A.V., Okuneva O.S., Malinovskaya N.A., Lopatina O.L., Petrova M.M., Taranushenko T.E., Fursov A.A., Kuvacheva N.V. NAD+-converting enzymes in neuronal and glial cells: CD38 as a novel target for neuroprotection. Vestnik Rossiiskoy akademii meditsinskikh nauk = Annals of the Russian Academy of Medical Sciences. 2012; 67 (10): 29–37. [In Russian]. doi: 10.15690/vramn.v67i10.413
11. Aksoy P., White T.A., Thompson M., Chini E.N. Regulation of intracellular levels of NAD: a novel role for CD38. Biochem. Biophys. Res. Commun. 2006; 345 (4): 1386–1392. doi: 10.1016/j.bbrc.2006.05.042
12. Deaglio S., Morra M., Mallone R., Ausiello C.M., Prager E., Garbarino G., Dianzani U., Stockinger H., Malavasi F. Human CD38 (ADP-ribosyl cyclase) is a counter-receptor of CD31, an Ig superfamily member. J. Immunol. 1998; 160 (1): 395–402.
13. Higashida H., Salmina A.B., Olovyannikova R.Y., Hashii M., Yokoyama S., Koizumi K., Jin D., Liu H.X., Lopatina O., Amina S., Islam M.S., Huang J.J., Noda M. Cyclic ADP-ribose as a universal calcium signal molecule in the nervous system. Neurochem. Int. 2007; 51 (2-4): 192–199. doi: 10.1016/j.neuint.2007.06.023
14. Deaglio S., Mallone R., Baj G., Arnulfo A., Surico N., Dianzani U., Mehta K., Malavasi F. CD38/ CD31, a receptor/ligand system ruling adhesion and signaling in human leukocytes. Chem. Immunol. 2000; 75: 99–120.
15. Malavasi F., Deaglio S., Funaro A., Ferrero E., Horenstein A.L., Ortolan E., Vaisitti T., Aydin S. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol. Rev. 2008; 88 (3): 841–886. doi: 10.1152/physrev.00035.2007
16. Franco L., Guida L., Bruzzone S., Zocchi E., Usai C., de Flora A. The transmembrane glycoprotein CD38 is a catalytically active transporter responsible for generation and influx of the second messenger cyclic ADP-ribose across membranes. FASEB J. 1998; 12 (14): 1507–1520. doi: 10.1096/fasebj.12.14.1507
17. Song E.K., Rah S.Y., Lee Y.R., Yoo C.H., Kim Y.R., Yeom J.H., Park K.H., Kim J.S., Kim U.H., Han M.K. Connexin-43 hemichannels mediate cyclic ADP-ribose generation and its Ca2+-mobilizing activity by NAD+/cyclic ADP-ribose transport. J. Biol.Chem. 2011; 286 (52): 44480–44490. doi: 10.1074/jbc.M111.307645
18. Hayakawa K., Esposito E., Wang X., Terasaki Y., Liu Y., Xing C., Ji X., Lo E.H. Transfer of mitochondria from astrocytes to neurons after stroke. Nature. 2016; 535 (7613): 551–555. doi: 10.1038/nature18928
19. Guerreiro S., Privat A.L., Bressac L., Toulorge D. CD38 in neurodegeneration and neuroinflammation. Cells. 2020; 9 (2): 471. doi: 10.3390/cells9020471
20. Boslett J., Hemann C., Christofi F.L., Zweier J.L. Characterization of CD38 in the major cell types of the heart: endothelial cells highly express CD38 with activation by hypoxia-reoxygenation triggering NAD(P)H depletion. Am. J. Physiol. Cell Physiol. 2018; 314 (3): 297–309. doi: 10.1152/ajpcell.00139.2017
21. Epelbaum S., Youssef I., Lacor P.N., Chaurand P., Duplus E., Brugg B., Duyckaerts C., Delatour B. Acute amnestic encephalopathy in amyloid-β oligomer-injected mice is due to their widespread diffusion in vivo. Neurobiol. Aging. 2015; 36 (6): 2043–2052. doi: 10.1016/j.neurobiolaging.2015.03.005
22. Sipos E., Kurunczi A., Kasza A., Horvath J., Felszeghy K., Laroche S., Toldi J., Parducz A., Penke B., Penke Z. Beta-amyloid pathology in the entorhinal cortex of rats induces memory deficits: implications for Alzheimer’s disease. Neuroscience. 2007; 147 (1): 28–36. doi: 10.1016/j.neuroscience.2007.04.011
23. Encinas J.M., Enikolopov G. Identifying and quantitating neural stem and progenitor cells in the adult brain. Methods Cell Biol. 2008; 85C: 243–272. doi: 10.1016/S0091-679X(08)85011-X
24. Zhu X.H., Lu M., Lee B.Y., Ugurbil K., Chen W. In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. Proc. Natl. Acad. Sci. USA. 2015; 112 (9): 2876–2881. doi: 10.1073/pnas.1417921112
25. Xie N., Zhang L., Gao W., Huang C., Huber P.E., Zhou X., Li C., Shen G., Zou B. NAD+ metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct. Target Ther. 2020; 5 (1): 227. doi: 10.1038/s41392-020-00311-7
26. Luengo A., Li Z., Gui D.Y., Sullivan L.B., Zagorulya M., Do B.T., Ferreira R., Naamati A., Ali A., Lewis C.A., Thomas C.J., Spranger S., Matheson N.J., Vander Heiden M.G. Increased demand for NAD+ relative to ATP drives aerobic glycolysis. Mol. Cell. 2021; 81 (4): 691–707. doi: 10.1016/j.molcel.2020.12.012
27. Braidy N., Berg J., Clement J., Khorshidi F., Poljak A., Jayasena T., Grant R., Sachdev P. Role of nicotinamide adenine dinucleotide and related precursors as therapeutic targets for age-related degenerative diseases: rationale, biochemistry, pharmacokinetics, and outcomes. Antioxid. Redox Signal. 2019; 30 (2): 251–294. doi: 10.1089/ars.2017.7269
28. Mills K.F., Yoshida S., Stein L.R., Grozio A., Kubota S., Sasaki Y., Redpath P., Migaud M.E., Apte R.S., Uchida K., Yoshino J., Imai S.I. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab. 2016; 24 (6): 795–806. doi: 10.1016/j.cmet.2016.09.013
29. Wang X., Hu X., Yang Y., Takata T., Sakurai T. Nicotinamide mononucleotide protects against β-amyloid oligomer-induced cognitive impairment and neuronal death. Brain Res. 2016; 1643: 1–9. doi: 10.1016/j.brainres.2016.04.060
30. Gerasimenko M., Cherepanov S.M., Furuhara K., Lopatina O., Salmina A.B., Shabalova A.A., Tsuji C., Yokoyama S., Ishihara K., Brenner C., Higashida H. Nicotinamide riboside supplementation corrects deficits in oxytocin, sociability and anxiety of CD157 mutants in a mouse model of autism spectrum disorder. Sci. Rep. 2020; 10 (1): 10035. doi: 10.1038/s41598-019-57236-7
31. Choi J.E., Mostoslavsky R. Sirtuins, metabolism, and DNA repair. Curr. Opin Genet. Dev. 2014; 26: 24–32. doi: 10.1016/j.gde.2014.05.005
32. Bruzzone S., Guida L., Zocchi E., Franco L., de Flora A. Connexin 43 hemi channels mediate Ca2+-regulated transmembrane NAD+ fluxes in intact cells. FASEB J. 2001; 15 (1): 10–12. doi: 10.1096/fj.00-0566fje
33. Clement J., Wong M., Poljak A., Sachdev P., Braidy N. The plasma NAD+ metabolome is dysregulated in «normal» aging. Rejuvenation Res. 2019; 22 (2): 121–130. doi: 10.1089/rej.2018.2077
34. Billington R.A., Travelli C., Ercolano E., Galli U., Roman C.B., Grolla A.A., Canonico P.L., Condorelli F., Genazzani A.A. Characterization of NAD uptake in mammalian cells. J. Biol. Chem. 2008; 283 (10): 6367–6374. doi: 10.1074/jbc.M706204200
35. Leung S.W.S., Shi Y. The glycolytic process in endothelial cells and its implications. Acta Pharmacol. Sin. 2021. doi: 10.1038/s41401-021-00647-y
36. Salmina A.B., Kuvacheva N.V., Morgun A.V., Komleva Y.K., Pozhilenkova E.A., Lopatina O.L., Gorina Y.V., Taranushenko T.E., Petrova L.L. Glycolysis- mediated control of blood-brain barrier development and function. Int. J. Biochem. Cell Biol. 2015; 64: 174–184. doi: 10.1016/j.biocel.2015.04.005
Review
For citations:
Semenova A.A., Gorina Ya.V., Khilazheva E.D., Kharitonova E.V., Salmina A.B. Rising of intracellular NAD+ level and oppositely directed changes in CD38 expression in hippocampal cells in experimental Alzheimer’s disease. Сибирский научный медицинский журнал. 2021;41(5):37-46. (In Russ.) https://doi.org/10.18699/SSMJ20210505