Preview

Сибирский научный медицинский журнал

Advanced search

Rising of intracellular NAD+ level and oppositely directed changes in CD38 expression in hippocampal cells in experimental Alzheimer’s disease

https://doi.org/10.18699/SSMJ20210505

Abstract

The aim of the study was to assess the level of NAD+ in the brain of mice treated with beta-amyloid (Aβ), as well as to determine the activity of ADP-ribosyl cyclase/CD38 and the number of CD38-immunopositive neurons, astrocytes and endothelial cells. Material and methods. The Alzheimer’s disease model was reproduced by intrahippocampal administration of Aβ to C57BL/6 mice. Determination of the NAD+ level in the extracellular fluid of the brain and in the hippocampal tissue was carried out by spectrophotometric analysis. Evaluation of the enzymatic activity of ADP-ribosyl cyclase / CD38 was carried out by the fluorimetric method, determination of the number of CD38-immunopositive cells by the immunohistochemistry method. Results and discussion. The level of NAD+ was significantly increased in the hippocampal tissue in mice after administration of Aβ, while the level of extracellular NAD+ did not change. The activity of ADP-ribosyl cyclase / CD38 in the hippocampal tissue did not change, but the number of CD38-immunopositive neurons decreased, and the number of CD38+ endothelial cells increased in the hippocampus of mice after administration of Aβ. Conclusion. Opposite changes in the expression of ADP-ribosyl cyclase / CD38 in neurons and endotheliocytes correspond to different metabolic states of these types of cells and, along with an increased intracellular pool of NAD+ in experimental Alzheimer’s disease, reflect an adaptive stress response to Aβ administration.

About the Authors

A. A. Semenova
Voyno-Yasenetsky Krasnoyarsk State Medical University of Minzdrav of Russia
Russian Federation

Alina A. Semenova, candidate of biological sciences

660022, Krasnoyarsk, Partisan Zheleznyak str., 1



Ya. V. Gorina
Voyno-Yasenetsky Krasnoyarsk State Medical University of Minzdrav of Russia
Russian Federation

Yana V. Gorina, candidate of pharmaceutical sciences

660022, Krasnoyarsk, Partisan Zheleznyak str., 1

 



E. D. Khilazheva
Voyno-Yasenetsky Krasnoyarsk State Medical University of Minzdrav of Russia
Russian Federation

Elena D. Khilazheva

660022, Krasnoyarsk, Partisan Zheleznyak str., 1



E. V. Kharitonova
Voyno-Yasenetsky Krasnoyarsk State Medical University of Minzdrav of Russia
Russian Federation

Ekaterina V. Kharitonova, candidate of pharmaceutical sciences

660022, Krasnoyarsk, Partisan Zheleznyak str., 1



A. B. Salmina
Voyno-Yasenetsky Krasnoyarsk State Medical University of Minzdrav of Russia; Research Center of Neurology
Russian Federation

Alla B. Salmina, doctor of medical sciences, professor

660022, Krasnoyarsk, Partisan Zheleznyak str., 1;

125367, Moscow, Volokolamskoe highway, 80



References

1. Kurakin A., Bredesen D.E. Alzheimer’s disease as a systems network disorder: chronic stress/dyshomeostasis, innate immunity, and genetics. Aging (Albany NY). 2020; 12 (18): 17815–17844. doi: 10.18632/aging.103883

2. Fernandez-Fernandez S., Almeida A., Bolaños J.P. Antioxidant and bioenergetic coupling between neurons and astrocytes. Biochem. J. 2012; 443 (1): 3–11. doi: 10.1042/BJ20111943

3. Kerr J.S., Adriaanse B.A., Greig N.H., Mattson M.P., Cader M.Z., Bohr V.A., Fang E.F.. Mitophagy and Alzheimer’s disease: cellular and molecular mechanisms. Trends Neurosci. 2017; 40 (3): 151–166. doi: 10.1016/j.tins.2017.01.002

4. Rose J., Brian C., Woods J., Pappa A., Panayiotidis M.I., Powers R., Franco R. Mitochondrial dysfunction in glial cells: Implications for neuronal homeostasis and survival. Toxicology. 2017; 391: 109–115. doi: 10.1016/j.tox.2017.06.011

5. Dong Y., Brewer G.J. Global metabolic shifts in age and alzheimer’s disease mouse brains pivot at NAD+/NADH redox sites. J. Alzheimers Dis. 2019; 71 (1): 119–140. doi: 10.3233/JAD-190408

6. Katsyuba E., Romani M., Hofer D., Auwerx J. NAD+ homeostasis in health and disease. Nat. Metab. 2020; 2 (1): 9–31. doi: 10.1038/s42255-019-0161-5

7. Camacho-Pereira J., Tarragó M.G., Chini C.C.S., Nin V., Escande C., Warner G.M., Puranik A.S., Schoon R.A., Reid J.M., Galina A., Chini E.N. CD38 dictates age-related NAD decline and mitochondrial dysfunction through an sirt3-dependent mechanism. Cell Metab. 2016; 23 (6): 1127–1139. doi: 10.1016/j.cmet.2016.05.006

8. Chini E.N. CD38 as a regulator of cellular NAD: a novel potential pharmacological target for metabolic conditions. Curr. Pharm. Des. 2009; 15 (1): 57–63. doi: 10.2174/138161209787185788

9. Horenstein A.L., Faini A.C., Morandi F., Bracci C., Lanza F., Giuliani N., Paulus A., Malavasi F. The circular life of human cd38: from basic science to clinics and back. Molecules. 2020; 25 (20): 4844. doi: 10.3390/molecules25204844

10. Salmina A.B., Inzhutova A.I., Morgun A.V., Okuneva O.S., Malinovskaya N.A., Lopatina O.L., Petrova M.M., Taranushenko T.E., Fursov A.A., Kuvacheva N.V. NAD+-converting enzymes in neuronal and glial cells: CD38 as a novel target for neuroprotection. Vestnik Rossiiskoy akademii meditsinskikh nauk = Annals of the Russian Academy of Medical Sciences. 2012; 67 (10): 29–37. [In Russian]. doi: 10.15690/vramn.v67i10.413

11. Aksoy P., White T.A., Thompson M., Chini E.N. Regulation of intracellular levels of NAD: a novel role for CD38. Biochem. Biophys. Res. Commun. 2006; 345 (4): 1386–1392. doi: 10.1016/j.bbrc.2006.05.042

12. Deaglio S., Morra M., Mallone R., Ausiello C.M., Prager E., Garbarino G., Dianzani U., Stockinger H., Malavasi F. Human CD38 (ADP-ribosyl cyclase) is a counter-receptor of CD31, an Ig superfamily member. J. Immunol. 1998; 160 (1): 395–402.

13. Higashida H., Salmina A.B., Olovyannikova R.Y., Hashii M., Yokoyama S., Koizumi K., Jin D., Liu H.X., Lopatina O., Amina S., Islam M.S., Huang J.J., Noda M. Cyclic ADP-ribose as a universal calcium signal molecule in the nervous system. Neurochem. Int. 2007; 51 (2-4): 192–199. doi: 10.1016/j.neuint.2007.06.023

14. Deaglio S., Mallone R., Baj G., Arnulfo A., Surico N., Dianzani U., Mehta K., Malavasi F. CD38/ CD31, a receptor/ligand system ruling adhesion and signaling in human leukocytes. Chem. Immunol. 2000; 75: 99–120.

15. Malavasi F., Deaglio S., Funaro A., Ferrero E., Horenstein A.L., Ortolan E., Vaisitti T., Aydin S. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol. Rev. 2008; 88 (3): 841–886. doi: 10.1152/physrev.00035.2007

16. Franco L., Guida L., Bruzzone S., Zocchi E., Usai C., de Flora A. The transmembrane glycoprotein CD38 is a catalytically active transporter responsible for generation and influx of the second messenger cyclic ADP-ribose across membranes. FASEB J. 1998; 12 (14): 1507–1520. doi: 10.1096/fasebj.12.14.1507

17. Song E.K., Rah S.Y., Lee Y.R., Yoo C.H., Kim Y.R., Yeom J.H., Park K.H., Kim J.S., Kim U.H., Han M.K. Connexin-43 hemichannels mediate cyclic ADP-ribose generation and its Ca2+-mobilizing activity by NAD+/cyclic ADP-ribose transport. J. Biol.Chem. 2011; 286 (52): 44480–44490. doi: 10.1074/jbc.M111.307645

18. Hayakawa K., Esposito E., Wang X., Terasaki Y., Liu Y., Xing C., Ji X., Lo E.H. Transfer of mitochondria from astrocytes to neurons after stroke. Nature. 2016; 535 (7613): 551–555. doi: 10.1038/nature18928

19. Guerreiro S., Privat A.L., Bressac L., Toulorge D. CD38 in neurodegeneration and neuroinflammation. Cells. 2020; 9 (2): 471. doi: 10.3390/cells9020471

20. Boslett J., Hemann C., Christofi F.L., Zweier J.L. Characterization of CD38 in the major cell types of the heart: endothelial cells highly express CD38 with activation by hypoxia-reoxygenation triggering NAD(P)H depletion. Am. J. Physiol. Cell Physiol. 2018; 314 (3): 297–309. doi: 10.1152/ajpcell.00139.2017

21. Epelbaum S., Youssef I., Lacor P.N., Chaurand P., Duplus E., Brugg B., Duyckaerts C., Delatour B. Acute amnestic encephalopathy in amyloid-β oligomer-injected mice is due to their widespread diffusion in vivo. Neurobiol. Aging. 2015; 36 (6): 2043–2052. doi: 10.1016/j.neurobiolaging.2015.03.005

22. Sipos E., Kurunczi A., Kasza A., Horvath J., Felszeghy K., Laroche S., Toldi J., Parducz A., Penke B., Penke Z. Beta-amyloid pathology in the entorhinal cortex of rats induces memory deficits: implications for Alzheimer’s disease. Neuroscience. 2007; 147 (1): 28–36. doi: 10.1016/j.neuroscience.2007.04.011

23. Encinas J.M., Enikolopov G. Identifying and quantitating neural stem and progenitor cells in the adult brain. Methods Cell Biol. 2008; 85C: 243–272. doi: 10.1016/S0091-679X(08)85011-X

24. Zhu X.H., Lu M., Lee B.Y., Ugurbil K., Chen W. In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. Proc. Natl. Acad. Sci. USA. 2015; 112 (9): 2876–2881. doi: 10.1073/pnas.1417921112

25. Xie N., Zhang L., Gao W., Huang C., Huber P.E., Zhou X., Li C., Shen G., Zou B. NAD+ metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct. Target Ther. 2020; 5 (1): 227. doi: 10.1038/s41392-020-00311-7

26. Luengo A., Li Z., Gui D.Y., Sullivan L.B., Zagorulya M., Do B.T., Ferreira R., Naamati A., Ali A., Lewis C.A., Thomas C.J., Spranger S., Matheson N.J., Vander Heiden M.G. Increased demand for NAD+ relative to ATP drives aerobic glycolysis. Mol. Cell. 2021; 81 (4): 691–707. doi: 10.1016/j.molcel.2020.12.012

27. Braidy N., Berg J., Clement J., Khorshidi F., Poljak A., Jayasena T., Grant R., Sachdev P. Role of nicotinamide adenine dinucleotide and related precursors as therapeutic targets for age-related degenerative diseases: rationale, biochemistry, pharmacokinetics, and outcomes. Antioxid. Redox Signal. 2019; 30 (2): 251–294. doi: 10.1089/ars.2017.7269

28. Mills K.F., Yoshida S., Stein L.R., Grozio A., Kubota S., Sasaki Y., Redpath P., Migaud M.E., Apte R.S., Uchida K., Yoshino J., Imai S.I. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab. 2016; 24 (6): 795–806. doi: 10.1016/j.cmet.2016.09.013

29. Wang X., Hu X., Yang Y., Takata T., Sakurai T. Nicotinamide mononucleotide protects against β-amyloid oligomer-induced cognitive impairment and neuronal death. Brain Res. 2016; 1643: 1–9. doi: 10.1016/j.brainres.2016.04.060

30. Gerasimenko M., Cherepanov S.M., Furuhara K., Lopatina O., Salmina A.B., Shabalova A.A., Tsuji C., Yokoyama S., Ishihara K., Brenner C., Higashida H. Nicotinamide riboside supplementation corrects deficits in oxytocin, sociability and anxiety of CD157 mutants in a mouse model of autism spectrum disorder. Sci. Rep. 2020; 10 (1): 10035. doi: 10.1038/s41598-019-57236-7

31. Choi J.E., Mostoslavsky R. Sirtuins, metabolism, and DNA repair. Curr. Opin Genet. Dev. 2014; 26: 24–32. doi: 10.1016/j.gde.2014.05.005

32. Bruzzone S., Guida L., Zocchi E., Franco L., de Flora A. Connexin 43 hemi channels mediate Ca2+-regulated transmembrane NAD+ fluxes in intact cells. FASEB J. 2001; 15 (1): 10–12. doi: 10.1096/fj.00-0566fje

33. Clement J., Wong M., Poljak A., Sachdev P., Braidy N. The plasma NAD+ metabolome is dysregulated in «normal» aging. Rejuvenation Res. 2019; 22 (2): 121–130. doi: 10.1089/rej.2018.2077

34. Billington R.A., Travelli C., Ercolano E., Galli U., Roman C.B., Grolla A.A., Canonico P.L., Condorelli F., Genazzani A.A. Characterization of NAD uptake in mammalian cells. J. Biol. Chem. 2008; 283 (10): 6367–6374. doi: 10.1074/jbc.M706204200

35. Leung S.W.S., Shi Y. The glycolytic process in endothelial cells and its implications. Acta Pharmacol. Sin. 2021. doi: 10.1038/s41401-021-00647-y

36. Salmina A.B., Kuvacheva N.V., Morgun A.V., Komleva Y.K., Pozhilenkova E.A., Lopatina O.L., Gorina Y.V., Taranushenko T.E., Petrova L.L. Glycolysis- mediated control of blood-brain barrier development and function. Int. J. Biochem. Cell Biol. 2015; 64: 174–184. doi: 10.1016/j.biocel.2015.04.005


Review

For citations:


Semenova A.A., Gorina Ya.V., Khilazheva E.D., Kharitonova E.V., Salmina A.B. Rising of intracellular NAD+ level and oppositely directed changes in CD38 expression in hippocampal cells in experimental Alzheimer’s disease. Сибирский научный медицинский журнал. 2021;41(5):37-46. (In Russ.) https://doi.org/10.18699/SSMJ20210505

Views: 486


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)