Preview

Сибирский научный медицинский журнал

Advanced search

FEATURES OF CHORIORETINAL BLOOD FLOW IN PATIENTS WITH OPEN-ANGLE GLAUCOMA

https://doi.org/10.15372/SSMJ20180506

Abstract

The purpose of the study was to evaluate the features of hemodynamics in patients with intraocular pressure (IOP) fluctuations, to reveal differential diagnostic criteria for adequate monitoring of glaucoma course according to optical coherence tomography (OCT) with the function of angiography. Material and methods. 25 patients (25 eyes) with hypertensive POAG were examined. The study included OCT of the retina and optic disk with the function of angiography. Patients of the clinical group underwent a non-penetrating fistulizing operation followed by laser goniopuncture. The examination was performed before the operation, in the early postoperative period, 1 and 3 months after the surgical intervention. The control group was 12 people (24 eyes) without ophthalmic pathology of the corresponding age and sex. Results and discussion. The obtained results testify to the role of regional hemodynamics in the formation of glaucoma neuroopticopathy. The revealed hemodynamic disturbances in the form of the decrease in the thickness of the choroid, decrease in the density of the radial peripapillary, superficial vascular plexus, and the corresponding glaucomatous changes in the optic disk, the layer of nerve fibers and the ganglionic retina complex, allow speaking about hypoperfusion caused by the decrease in the metabolic needs of atrophied tissue. Surgical interventions used in the treatment of patients with glaucoma lead to an improvement in blood flow parameters. Retinal and choroidal vessels respond differently to intraocular pressure fluctuations, which indicate different mechanism of adaptation of the eye’s vascular system in response to the change in the ophthalmotonus. In this connection, the question arises of the need to determine the individual intraocular pressure.

About the Authors

S. I. Zhukova
S. Fyodorov Eye Microsurgery Federal State Institution, Irkutsk Branch
Russian Federation


T. N. Yuryeva
S. Fyodorov Eye Microsurgery Federal State Institution, Irkutsk Branch; Irkutsk State Medical Academy of Postgraduate Education, Branch of the Russian Medical Academy of Continuing Vocational Education of Minzdrav of Russia
Russian Federation


I. V. Pomkina
S. Fyodorov Eye Microsurgery Federal State Institution, Irkutsk Branch
Russian Federation


A. S. Grishchuk
S. Fyodorov Eye Microsurgery Federal State Institution, Irkutsk Branch; Irkutsk State Medical Academy of Postgraduate Education, Branch of the Russian Medical Academy of Continuing Vocational Education of Minzdrav of Russia
Russian Federation


References

1. Национальное руководство по глаукоме для практикующих врачей, 3-е изд., испр. и доп. / ред. Е.А. Егоров, Ю.С. Астахов, В.П. Еричев. М.: ГЭОТАР-Медиа, 2015. 457 с.

2. Caprioli J. Intraocular pressure fluctuation: an independent risk factor for glaucoma? // Arch. Ophthalmol. 2007. 125. 1124-1125.

3. Harris A., Jonescu-Cuypers C.P., Kagemann L., Ciulla T.A., Kreiglstein G.K. Ocular vascular anatomy // Atlas of ocular blood flow / Ed. A. Harris. Philadelphia, 2003. Section 1. 1-19.

4. Kim J.S., Ishikawa H., Gabriele M.L., Wollstein G., Bilonick R.A., Kagemann L., Fujimoto J.G., Schuman J.S. Retinal nerve fiber layer thickness measurement comparability between time domain optical coherence tomography (OCT) and spectral domain OCT // Invest. Ophthalmol. Vis. Sci. 2010. 51. (2). 896-902.

5. Liu L., Jia Y., Takusagawa H., Morrison J., Huang D. Optical coherence tomography angiography of the peripapillary retina in glaucoma // JAMA Ophthalmol. 2015. 133. (9). 1045-1052.

6. Liu L., Jia Y., Takusagawa H., Morrison J., Huang D. Optical coherence tomography angiography of the peripapillary retina in glaucoma // JAMA Ophthalmol. 2015. 133. (9). 1045-1052.

7. Mrejen S., Spaide R.F. Optical coherence tomography: imaging of the choroid and beyond // Surv. Ophthalmol. 2013. 58. 387-429.

8. Park S.B., Sung K.R., Kang S.Y., Kim K.R., Kook M.S. Comparison of glaucoma diagnostic capabilities of Cirrus HD and Stratus optical coherence tomography // Arch. Ophthalmol. 2009. 127. 1603-1609.

9. Pechauer A., Liu L., Gao S., Jian C., Huang D. Optical coherence tomography angiography of peripapillary retinal blood flow response to hyperoxia // Invest. Ophthalmol. Vis. Sci. 2015. 56. 328-329.

10. Savastano M., Lumbroso B., Rispoli M. In vivo characterization of retinal vascularization morphology using optical coherence tomography angiography // Retina. 2015. 35. (11). 2196-2203.

11. Takayama K., Hangai M., Kimura Y., Morooka S., Nukada M., Akagi T., Ikeda H.O., Matsumoto A., Yoshimura N. Three-dimensional imaging of lamina cribrosa defects in glaucoma using swept-source optical coherence tomography // Invest. Ophthalmol. Vis. Sci. 2013. 54. 4798-4807.

12. Wang B., Nevins J.E., Nadler Z., Wollstein G., Ishikawa H., Bilonick R.A., Kagemann L., Sigal I.A., Grulkowski I., Liu J.J., Kraus M., Lu C.D., Hornegger J., Fujimoto J.G., Schuman J.S. In vivo lamina cribrosa micro-architecture in healthy and glaucomatous eyes as assessed by optical coherence tomography // Invest. Ophthalmol. Vis. Sci. 2013. 54. 8270-8274.


Review

For citations:


Zhukova S.I., Yuryeva T.N., Pomkina I.V., Grishchuk A.S. FEATURES OF CHORIORETINAL BLOOD FLOW IN PATIENTS WITH OPEN-ANGLE GLAUCOMA. Сибирский научный медицинский журнал. 2018;38(5):38-44. (In Russ.) https://doi.org/10.15372/SSMJ20180506

Views: 261


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)