Features of autophagy in the cytoplasm of endotheliocytes of blood capillaries in severe burn septicotoxemia
https://doi.org/10.18699/SSMJ20210309
Abstract
Burn injury and its consequences are an important medical and social problem, given the high mortality and disability rates. The leading cause of death in patients with extensive and deep burns is burn septicotoxemia.
Material and methods. The material was the heart muscle of the anterior, posterior and lateral walls of the left ventricle of those who died from burn disease during septicotoxemia. The control group included cases of male mortality as a result of “acute coronary death”. The study of the ultrastructure of endotheliocytes of blood capillaries of the myocardium has been carried out.
Results and discussion. Ultrastructural analysis of endotheliocytes of blood capillaries of the myocardium showed that in burn septicotoxemia, intracellular degradation processes are observed in the form of swelling of the cytoplasm and organelles, a decrease in the concentration of vesicular structures, as well as activation of autophagy due to the appearance of autophagosomes and autolysosomes in the cytoplasm. Activation of autophagy should be considered as a naturally developing compensatory reaction aimed at preserving the cellular pool of endotheliocytes of the blood capillaries of the myocardium in response to the alterative effect caused by burn septicotoxemia.
Conclusion. The obtained data can serve as a justification for the manifestation of left ventricular contractile insufficiency, which is a consequence of endothelial dysfunction and microcirculatory disorders in the myocardium in burn septicotoxemia.
About the Authors
S. V. SavchenkoRussian Federation
Sergey V. Savchenko - doctor of medical sciences, professor.
630091, Novosibirsk, Krasny ave., 52
A. S. Grebenshchikova
Russian Federation
Alina S. Grebenshchikova
630091, Novosibirsk, Krasny ave., 52
N. P. Bgatova
Russian Federation
Nataliya P. Bgatova - doctor of biological sciences, professor.
630060, Novosibirsk, Timakov str., 2
Yu. S. Taskaeva
Russian Federation
Yulia S. Taskaeva - сandidate of medical sciences.
630060, Novosibirsk, Timakov str., 2
A. Yu. Letyagin
Russian Federation
Аndrey Yu. Letyagin - doctor of medical sciences, professor.
630060, Novosibirsk, Timakov str., 2
V. P. Novoselov
Russian Federation
Vladimir P. Novoselov - doctor of medical sciences, professor.
630091, Novosibirsk, Krasny ave., 52
References
1. Weber J., McManus A., Nursing Committee of the International Society for Burn Injuries. Infection control in burn patients. Burns. 2004; 30 (8): 16-24. doi: 10.1016/j.burns.2004.08.003
2. Elkbuli A., Polcz V, Elghoroury A., Young E., Hai S., Boneva D., McKenney M. Disparities in burn injury prevalence and outcomes: results of a community-based burn prevention program. Am. Surg. 2019; 85 (2): 106-107. doi: 10.1177/000313481908500213
3. Greenhalgh D.G. Sepsis in the burn patient: a different problem than sepsis in the general population. Burns Trauma. 2017; 5 (1): 23-33. doi: 10.1186/s41038-017-0089-5
4. Kostin S., Pool L., Elsasser A., Hein S., Drexler H.C., Arnon E., Hayakawa Y., Zimmermann R., Bauer E., Klovekorn W.P., Schaper J. Myocytes die by multiple mechanisms in failing human hearts. Circ. Res. 2003; 92 (7): 715-724. doi: 10.1161/01.RES.0000067471.95890.5C
5. Shestakova M.V. Endothelial dysfunction is a cause or effect of metabolic syndrome. Rossiyskiy meditsinskiy zhurnal = Medical Journal of the Russian Federation. 2001; 9 (2): 88-101. [In Russian].
6. Kalinin R.E., Suchkov I.A., Korotkova N.V., Mzhavanadze N.D. Study of the molecular mechanisms of endothelial dysfunction in vitro. Geny i kletki = Genes and Cells. 2019; 14 (1): 22-32. [In Russian]. doi: 10.23868/201903003
7. Tuttolomondo A., Reimondo D., Pecoraro R., Arnao V., Pinto A., Licata G. Atherosclerosis as an inflammatory disease. Cur. Pharm. Des. 2012; 18 (28): 4266-4288. doi: 10.2174/138161212802481237
8. Hamacher-Brady A., Brady N.R. Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell. Mol. Life Sci. 2016; 73 (4): 775-795. doi: 10.1007/s00018-015-2087-8
9. Gao J., Wang L., Liu J., Xie F., Su B., Wang X. Abnormalities of mitochondrial dynamics in neurodegenerative diseases. Antioxidants (Basel). 2017; 6 (2): 25. doi: 10.3390/antiox6020025
10. Andreyev A.Yu., Kushnareva Yu.E., Starkov A.A. Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc.). 2005; 70 (2): 200-214. doi: 10.1007/s10541-005-0102-7
11. Grivennikova V. G., Vinogradov A.D. Mitochondrial production of reactive oxygen species. Uspekhi biologicheskoy khimii = Biochemistry (Moscow). 2013; 78 (13): 1490-1511. doi: 10.1134/S0006297913130087
12. Di Meo S., Reed T.T., Venditti P., Victor V.M. Role of ROS and RNS sources in physiological and pathological conditions. Oxid. Med. Cell. Longev. 2016; 2016: 1245049. doi: 10.1155/2016/1245049
13. Filomeni G., de Zio D., Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 2015; 22 (3): 377388. doi: 10.1038/cdd.2014.150
14. Liguori I., Russo G., Curcio F., Bulli G., Aran L., Della-Morte D., Gargiulo G., Testa G., Cacciatore F., Bonaduce D., Abete P. Oxidative stress, aging, and diseases. Clin. Interv. Aging. 2018; 13: 757-772. doi: 10.2147/CIA.S158513
15. Golomb E., Nyska A., Schwalb H. Occult cardiotoxicity-toxic effects on cardiac ischemic tolerance. Toxicol. Pathol. 2009; 37(5): 572-593. doi: 10.1177/0192623309339503
16. Adachi H., Tsujimoto M. Endothelial scavenger receptors. Prog. Lipid Res. 2006; 45 (5): 379-404. doi: 10.1016/j.plipres.2006.03.002
17. Cruz S., Narayanaswami V. Cellular uptake and clearance of oxidatively-modified apolipoprotein E3 by cerebral cortex endothelial cells. Int. J. Mol. Sci. 2019; 20 (18): 4582. doi: 10.3390/ijms20184582
18. Reeh J., Therming C.B., Heitmann M., Therming C.B., H0jberg S., S0rum C., Bech D., Dominguez H., Sehestedt T., Hermann T., Hansen K.W., Simonsen L., Galatius S., Prescott E. Prediction of obstructive coronary artery disease and prognosis in patients with suspected stable angina. Eur. Heart. J. 2018; 40: 1426-1435. doi: 10.1093/eurheartj/ehy806
19. Gatica D., Chiong M., Lavandero S., Klionsky D.J. Molecular mechanisms of autophagy in the cardiovascular system. Circ. Res. 2015; 116 (3): 456467. doi: 10.1161/CIRCRESAHA.n4.303788