Роль биоактивных липидов в метаболизме больных с ожирением и перспективы их применения в послеоперационном периоде
https://doi.org/10.18699/SSMJ20210302
Аннотация
В научном обзоре анализируются публикации, в которых доказывается положительное воздействие биоактивных липидов на здоровье человека. Отмечено, что отдельные липиды обладают профилактическим действием на организм, могут сдерживать развитие некоторых заболеваний. Увеличенная скорость пассажа пищевых масс после бариатрических операций влияет на полноту расщепления и всасывания липидов в желудке и тонкой кишке. При значительных нарушениях это может вызывать некоторые осложнения у оперированных. Проанализировано влияние биоактивных липидов на метаболизм больных с ожирением, возможность включения липидов в послеоперационную диету.
Ключевые слова
Об авторах
А. Б. ФурсовКазахстан
Александр Борисович Фурсов - доктор медицинских наук, профессор.
010000, Нур-Султан, ул. Бейбитшилик, 49а
О. Б. Оспанов
Казахстан
Орал Базарбаевич Османов - доктор медицинских наук, профессор.
010000, Нур-Султан, ул. Бейбитшилик, 49а
Р. А. Фурсов
Казахстан
Роман Александрович Фурсов - доктор медицинских наук.
010000, Нур-Султан, ул. Бейбитшилик, 49а
Список литературы
1. Diet, nutrition and the prevention of chronic diseases. Report of the joint WHO/FAO expert consultation. WHO Technical Report Series, No. 916 (TRS 916). Available at: https://www.who.int/dietphysicalactivity/publications/trs916/summary/en/
2. Di Ciaula A., Portincasa P. Diet and contaminants: driving the rise to obesity epidemics? Curr. Med. Chem. 2019; 26 (19): 3471-3482. doi: 10.2174/0929867324666170518095736
3. Tirosh A., Calay E.S., Tuncman G., Claiborn K.C., Inouye K.E., Eguchi K., Alcala M., Rathaus M., Hollander K.S., Ron I., Livne R., Heianza Y., Qi L., Shai I., Garg R., Hotamisligi G.S. The short-chain fatty acid propionate increases glucagon and FABP4 production, impairing insulin action in mice and humans. Sci. Trans. Med. 2019; 11 (489): eaav0120. doi: 10.1126/scitranslmed.aav0120
4. Huang R., Ding X., Fu H., Cai Q. Potential mechanisms of sleeve gastrectomy for reducing weight and improving metabolism in patients with obesity. Surg. Obes. Relat. Dis. 2019; 15 (10): 1861-1871. doi: 10.1016/j.soard.2019.06.022
5. Яшков Ю.И., Седлецкий Ю.И., Василевский Д.И., Цветков Б.Ю., Кричмар А.М. Повторные вмешательства в бариатрической хирургии. Педиатрия. 2019; 10 (3): 81-91. doi: 10.17816PED10381-91
6. Fursov A.B., Fursov R.A. Correlation of anthropometric parameters in patients with metabolic syndrom before endoscopic gastro-bypass surgery. Eur. J. Nat. Hist. 2016; (1): 5-6.
7. Food Pattern Modeling for the 2020 Dietary Guidelines Advisory Committee. Scientific Report of the 2020 Dietary Guidelines Advisory Committee: Washington, DC. Available at: https://www.di-etaryguidelines.gov/2020-advisory-committee-report/food-pattern-modeling
8. Hamm J.D., Dotel J., Tamura S., Shechter A., Herzog M., Brunstrom J.M., Albu J., Pi-Sunyer X., Laferrere B., Kissileff H.R. Reliability and responsiveness of virtual portion size creation tasks: Influences of context, foods, and a bariatric surgical procedure. Physiol. Behav. 2020; (223): 113001. doi: 10.1016/j.physbeh.2020.113001
9. Drewnowski A., Fulgoni V.L. New Nutrient Rich Food nutrient density models that include nutrients and MyPlate food groups. Front. Nutr. 2020; (7): 107. doi: 10.3389/fnut.2020.00107
10. Al-Najim W., Docherty N.G., le Roux C.W. Food intake and eating behavior after bariatric surgery. Physiol. Rev. 2018; 98 (3): 1113-1141. doi: 10.1152/physrev.00021.2017
11. Paolino L., Pravettoni R., Epaud S., Ortala M., Lazzati A. Comparison of surgical activity and scientific publications in bariatric surgery: an epidemiological and bibliometric analysis. Obes. Surg. 2020; (30): 3822-3830. doi: 10.1007/s11695-020-04703-0
12. Ozsoy Z., Demir E. Which bariatric procedure is the most popular in the world? A bibliometric comparison. Obes. Surg. 2018; 28 (8), 2339-2352. doi: 10.1159/000114966
13. Fumes M.W., Stenstrom B., T0mmeras K., Skoglund T., Dickson S.L., Kulseng B., Zhao C.M., Chen D. Feeding behavior in rats subjected to gastrectomy or gastric bypass surgery. Eur. Surg. Res. 2008; 40 (3): 279-288. doi: 10.1159/000114966
14. Mushref M.A., Srinivasan S. Effect of high fat-diet and obesity on gastrointestinal motility. Ann. Trans. Med. 2013; 1 (2): 14. doi: 10.3978/j.issn.2305-5839.2012.11.01
15. Jammah A.A. Endocrine and metabolic complications after bariatric surgery. Saudi J. Gastroenterol. 2015; 21 (5): 269-277. doi: 10.4103/1319-3767.164183
16. Weimann A., Oberander N., Hosel J. Chirur-gische und metabolische Komplikationen nach baria-trischen Operationen - Ernahrungsempfehlungen. Aktuelle Ernahrungsmedizin. 2018; 43 (01): 28-33. [In German]. doi: 10.1055/s-0044-101478
17. Martrnez-Ortega A.J., Olveira G., Pereira-Cu-nill J.L., Arraiza-Irigoyen C., Garda-Almeida J.M., Irles Rocamora J.A., Molina-Puerta M.J., Molina Soria J.B., Rabat-Restrepo J.M., Rebollo-Perez M.I., Serrano-Aguayo M.P., Tenorio-Jimenez C., VHches-Lopez F.J., Garda-Luna P.P. Recommendations based on evidence by the Andalusian Group for Nutrition Reflection and Investigation (GARIN) for the pre- and postoperative management of patients undergoing obesity surgery. Nutrients. 2020; 12 (7): 2002. doi: 10.3390/nu12072002
18. O’Kane M., Parretti H.M., Pinkney J., Wel-bourn R., Hughes C.A., Mok J., Walker N., Thomas D., Devin J., Coulman K.D., Pinnock G., Batterham R.L., Mahawar K.K., Sharma M., Blakemore A.I., McMillan I., Barth J.H. British Obesity and Metabolic Surgery Society Guidelines on perioperative and postoperative biochemical monitoring and micronutrient replacement for patients undergoing bariatric surgery - 2020 update. Obes. Rev. 2020; 21 (11): e13087. doi: 10.1111/obr.13087
19. Dirksen C., Damgaard M., Bojsen-M0ller K.N., J0rgensen N.B., Kielgast U., Jacobsen S.H., Naver L.S., Worm D., Holst J.J., Madsbad S., Hansen D.L., Madsen J.L. Fast pouch emptying, delayed small intestinal transit, and exaggerated gut hormone responses after Roux-en-Y gastric bypass. Neurogastroenterol. Motil. 2013; 25 (4): 346-e255. doi: 10.1m/nrno.12087
20. Романцова Т.И. Аналог глюкагоноподобного пептида-1 лираглутид (Саксенда®): механизм действия, эффективность в лечении ожирения. Ожирение и метаболизм. 2018; 15 (1): 3-11. doi: 10.14341/omet201813-11
21. Osinski C., Gleau L.L., Poitou C., de Toro-Mar-tin J., Genser L., Fradet M., Soula H.A., Leturque A., Blugeon C., Jourdren L., Hubert E.L., Clement K., Ser-radas P., Ribeiro A. Type 2 diabetes is associated with impaired jejunal enteroendocrine. Int. J. Obes. (Lond.). 2021; 45 (1): 170-183. https://doi.org/10.1038/s41366-020-00694-1
22. Seyfried F., Miras A.D., Bueter M., Prechtl C.G., Spector A.C., le Roux C.W. Effects of preoperative exposure to a high-fat versus a low-fat diet on ingestive behavior after gastric bypass surgery in rats. Surg. Endosc. 2013; 27 (11): 4192- 4201. doi: 10.1007/s00464-013-3020-6
23. Wilson-Perez H.E., Chambers A.P., Sandoval D.A., Stefater M.A., Woods S.C., Benoit S.C., Seeley R.J. The effect of vertical sleeve gastrectomy on food choice in rats. Int. J. Obes. (Lond.). 2013; 37 (2): 288-295. doi: 10.1038/ijo.2012.18
24. Trostler N., Mann A., Zilberbush N., Avino-ach E., Charuzi I. Weight loss and food intake 18 months following vertical banded gastroplasty or gastric bypass for severe obesity. Obes. Surg. 1995; 5 (1): 39-51. doi: 10.1381/096089295765558141
25. Bavaresco M., Paganini S., Lima T.P., Salga-do W. Jr., Ceneviva R., Dos Santos J.E., Nonino-Borges C.B. Nutritional course of patients submitted to bariatric surgery. Obes. Surg. 2010; 20 (6): 716-721. doi: 10.1007/s11695-008-9721-6
26. Ulker i., Hilal Y. The effects of bariatric surgery on gut microbiota in patients with obesity: a review of the literature. Biosci. Microbiota Food Health. 2019; 38 (1): 3-9. doi: 10.12938/bmfh.18-018
27. Crommen S., Mattes A., Simon M.-C. Microbial adaptation due to gastric bypass surgery: the nutritional impact. Nutrients. 2020; 12 (4): 1199. doi: 10.3390/nu12041199
28. Moles L., Otaegui D. The impact of diet on microbiota evolution and human health. Is diet an adequate tool for microbiota modulation? Nutrients. 2020; 12 (6): 1654. doi: 10.3390/nu12061654
29. Swanson J.E. Bioactive food components. In: Encyclopedia of food and culture. Acceptance to Food Politics. Ed. Solomon H. Katz. New York: Charles Scribner’s Sons, 2003; 1: 201-205.
30. Garrett R.H., Grisham C.M. Lipids. In: Biochemistry. Sixth Edition. Orlando: Saunders College, Harcourt Brace, 2017. 245-271.
31. Chiurchrn V, Leuti A., Maccarrone M. Bioactive lipids and chronic inflammation: managing the fire within. Front. Immunol. 2018; (9): 1-11. doi: 10.3389/fimmu.2018.00038
32. ГОСТ Р 54059-2010. Национальный стандарт Российской Федерации. Продукты пищевые функциональные. Ингредиенты пищевые функциональные. Классификация и общие требования. М.: Стандартинформ, 2019. Режим доступа: http://docs.cntd.ru/document/1200085998
33. Farvid M.S., Ding M., Pan A., Sun Q., Chi-uve S.E., Steffen L.M., Willett W.C., Hu F.B. Dietary linoleic acid and risk of coronary heart disease: a systematic review and meta-analysis of prospective cohort studies. Circulation. 2014; 130 (18): 1568-1578. doi: 10.1161/CIRCULATIONAHA.114.010236
34. Meng H., Matthan N.R., Wu D., Li L., Rodriguez-Morato J., Cohen R., Galluccio J.M., Dolnikowski G.G., Lichtenstein A.H. Comparison of diets enriched in stearic, oleic and palmitic acids on inflammation, immune response, cardiometabolic risk factors, and fecal bile acid concentrations in mildly hypercholesterolemic postmenopausal women-randomized crossover trial. Am. J. Clin. Nutr. 2019; 110 (2): 305-315. doi: 10.1093/ajcn/nqz095
35. Nutrition guidelines for weight loss surgery (Johns Hopkins Bayview Medical Center). Rev. Clin. Nutr. 2020; (2): 16. Available at: https://www.hopkinsmedicine.org/bariatrics/_documents/nutrition-guidelines-for-weight-loss-surgery.pdf.
36. Istfan N.W., Lipartia M., Anderson W.A., Hess D.T., Apovian C.M. Approach to the patient: management of the post-bariatric surgery patient with weight regain. J. Clin. Endocrinol. Metab. 2021; 106 (1): 251-263. doi: 10.1210/clinem/dgaa702
37. Weimann A., Braga M., Carli F., Higashiguchi T., ffibner M., Klek S., Laviano A., Ljungqvist O., Lo-bo D.N., Martindale R., Waitzberg D.L., Bischoff S.C., Singer P. ESPEN guideline: Clinical nutrition in surgery. Clin. Nutr. 2017; 36 (3): 623-650. doi: 10.1016/j.clnu.2017.02.013
38. DeMuro J., Turley R.K., Karlin R. Problems with digesting fat after weight-loss surgery. Health Encyclopedia. URMC. 2019. Available at: www.urmc.rochester.edu/encyclopedia/content.aspx?contenttypeid=134&contentid=106
39. Mechanic J.I., Apovian C., Brethauer S., Garvey W.T., Joffe A.M., Kim J., Kushner R.F., Lindquist R., Pessah-Pollack R., Seger J., Urman R.D., Adams S., Cleek J.B., Correa R., Figaro M.K., Flanders K., Grams J., Hurley D.L., Kothari S., Seger M.V., Still C.D. Clinical practice guidelines for the perioperative nutrition, metabolic, and nonsurgical support of patients undergoing bariatric procedures - 2019. En-docr. Pract. 2019; 25 (12): 1346-1359. doi: 10.4158/GL-2019-0406
40. Бельмер С.В., Ардатская М.Д., Акопян А.Н. Короткоцепочечные жирные кислоты в лечении функциональных заболеваний кишечника у детей. Теоретическое обоснование и практическое применение. М.: Прима Принт, 2015. 48 с.
41. Wanjun F., Xue H., Chen X., Chen K., Ling W. Supplementation with Sodium butyrate modulates the composition of the gut microbiota and ameliorates high-fat diet-induced obesity in mice. J. Nutr. 2019; 149 (5): 747-754. doi: 10.1093/jn/nxy324
42. Zhang L.S., Davies S.S. Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Genome Med. 2016; 8 (1): 46. doi:10.1186/s13073-016-0296-x
43. Aoun A., Darwish F., Hamod N. The influence of the gut microbiome on obesity in adults and the role of probiotics, prebiotics, and synbiotics for weight loss. Prev. Nutr. Food Sci. 2020; 25 (2): 113-123. doi:10.3746/pnf.2020.25.2.113
44. Farup P.G., Valeur J. Changes in faecal short-chain fatty acids after weight-loss interventions in subjects with morbid obesity. Nutrients. 2020; 12 (3): 802. doi: 10.3390/nu12030802
45. Traisaeng S., Batsukh A., Chuang T.-H., Herr D.R., Huang Y.-F., Chimeddorj B., Huang C.-M. Leuconostoc mesenteroides fermentation produces butyric acid and mediates Ffar2 to regulate blood glucose and insulin in type 1 diabetic mice. Sci. Rep. 2020; 10 (1): 7928. doi: 10.1038/s41598-020-64916-2
46. Marten B., Pfeuffer M., Schrezenmeir J. Medium-chain triglycerides. Int. Dairy J. 2006; 16 (11): 1374-1382. doi: 10.1016/j.idairyj.2006.06.015
47. Lemarie F., Beauchamp E., Drouin G., Leg-rand P., Rioux V. Dietary caprylic acid and ghrelin 0- acyltransferase activity to modulate octanoylated ghrelin functions: What is new in this nutritional field? Prostaglandins Leukot. Essent. Fatty Acids. 2018; 135: 121-127. doi: 10.1016/j.plefa.2018.07.009
48. Aluko R.E. Bioactive Lipids. In: Functional Foods and Nutraceuticals. Food Science Text Series. New York: Springer, 2012. 23-36. doi: 10.1007/978-1-4614-3480-1
49. Ариповский А.В., Титов В.Н. Физиология среднецепочечных жирных кислот. Физиология, особенности метаболизма и применение в клинике. Клин. лаб. диагност. 2013; (6): 3-10.
50. Фурсов Р.А. Лапароскопическое бариатрическое гастрошунтирование в хирургическом лечении метаболического синдрома. Автореф. дис. ... докт. мед. наук (PhD). Нур-Султан, 2019.
51. Liu Y., Xue C., Zhang Y., Xu Q., Yu X., Zhang X., Wang J., Zhang R., Gong X., Guo C. Triglyceride with medium-chain fatty acids increases the activity and expression of hormone-sensitive lipase in white adipose tissue of C57BL/6J mice. Biosci. Biotechnol. Biochem. 2011; 75 (10): 1939-1944. doi: 10.1271/bbb.110321
52. Palomer X., Pizarro-Delgado J., Barroso E., Vazquez-Carrera M. Palmitic and oleic acid: the yin and yang of fatty acids in type 2 diabetes mellitus. Trends Endocrinol. Metab. 2018; 29 (3): 178-190. doi: 10.1016/j.tem.2017.11.009
53. Gonzalez-Becerra K., Ramos-Lopez O., Barron-Cabrera E., Riezu-Boj J.I., Milagro F.I., Martinez-Lopez E., Martinez J.A. Fatty acids, epigenetic mechanisms and chronic diseases: a systematic review. Lipids Health Dis. 2019; 18 (1): 178. doi:10.1186/s12944-019-1120-6
54. Meng H., Matthan N.R., Wu D., Li L., Rodri-guez-Morato J., Cohen R., Galluccio J.M., Dolnikows-ki G.G., Lichtenstein A.H. Comparison of diets enriched in stearic, oleic, and palmitic acids on inflammation, immune response, cardiometabolic risk factors, and fecal bile acid concentrations in mildly hypercholester-olemic postmenopausal women-randomized crossover trial. Am. J. Clin. Nutrtrition. 2019; 110 (2): 305-315. doi: 10.1093/ajcn/nqz095
55. Song J., Kim Y.-S., Lee D.H., Lee S.H., Park H.J., Lee D., Kim H. Neuroprotective effects of oleic acid in rodent models of cerebral ischaemia. Sci. Rep. 2019; (9): 10732. doi: 10.1038/s41598-019-47057-z
56. Elinder F., Liin S.I. Actions and mechanisms of polyunsaturated fatty acids on voltage-gated ion channels. Front. Physiol. 2017; (8): 43. doi: 10.3389/fphys.2017.00043
57. Julibert A., Bibiloni M.D.M., Mateos D., Angullo E., Tur J.A. Dietary fat intake and metabolic syndrome in older adults. Nutrients. 2019; 11 (8): 1901. doi: 10.3390/nu11081901
58. Paniagua J.A., de la Sacristana A.G., Sanchez E., Romero I., Vidal-Puig A., Berral F.J., Escribano A., Moyano M.J., Perez-Martinez P., Lopez-Miranda J., Perez-Jimenez F. A MUFA-rich diet improves posprandial glucose, lipid and GLP-1 responses in insulin-resistant subjects. J. Am. Coll. Nutr. 2007; 26 (5): 434-444. doi: 10.1080/07315724.2007.10719633
59. Joris P.J., Mensink R.P. Role of cis-monounsaturated fatty acids in the prevention of coronary heart disease. Curr. Atheroscler. Rep. 2016; 18 (7): 38. doi: 10.1007/s11883-016-0597-y
60. Castro A.V.B., Kolka C.M., Kim S.P., Bergman R.N. Obesity, insulin resistance and comorbidities - Mechanisms of association. Arq. Bras. Endocrinol. Metabol. 2014; 58 (6): 600-609. doi:10.1590/0004-2730000003223
61. Ibarguren M., Lopez D.J., Escriba P.V. The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health. Biochim. Biophys. Acta. 2014; 1838 (6): 1518-1528. https://doi.org/10.1016/j.bbam-em.2013.12.021
62. Bacle A., Kadri L., Khoury S., Ferru-Clement R., Faivre J.-F., Cognard C., Bescond J., Krzesiak A., Con-tzler H., Delpech N., Colas J., Vandebrouck C., Se-bille S., Ferreira T. A comprehensive study of phospholipid fatty acid rearrangements in metabolic syndrome: correlations with organ dysfunction. Dis. Model. Mech. 2020; 13 (6): dmm043927. doi:10.1242/dmm.043927
63. Li Y., Gonzalez T., Fernandez C. Saturated fatty acids differentially affects adipocytes and muscle cells. FASEB J. 2015; 29 (S1): 750.7. doi: 10.1096/fase-bj.29.1_supplement.750.7
64. Duhan N., Barak S., Mudgil D. Bioactive lipids: chemistry & health benefits. Biointerface Res. Appl. Chem. 2020; 10 (6): 6676-6687. doi: 10.33263/BRI-AC106.66766687
65. Mach F., Baigent C., Catapano A.L., Koski-nas K.C., Casula M., Badimon L., Chapman M.J., de Backer G.G., Delgado V, Ference B.A., Graham I.M., Halliday A., Landmesser U., Mihaylova B., Pedersen T.R., Riccardi G., Richter D.J., Sabatine M.S., Taskinen M., Tokgozoglu L., Wiklund O. 2019, Рекомендации ESC/EAS по лечению дислипидемий: модификация липидов для снижения сердечнососудистого риска. Рос. кардиол. ж. 2020; 25 (5): 3826. doi: 10.15829/1560-4071-2020-3826
66. Metcalfe L.K., Smith G.C., Turner N. Defining lipid mediators of insulin resistance: controversies and challenges. J. Mol. Endocrinol. 2018; JME-18-0023. doi: 10.1530/JME-18-0023
67. Dornbush S., Aeddula N.R. Physiology, Leptin. Treasure Island (FL): StatPearls Publishing; 2021. Available at: https://www.ncbi.nlm.nih.gov/books/NBK537038/
68. Oppedisano F., Macri R., Gliozzi M., Muso-lino V, Carresi C., Maiuolo J., Bosco F., Nucera S., Zito M.C., Guarnieri L., Scarano F., Nicita C., Coppoletta A.R., Ruga S., Scicchitano M., Mollace R., Palma E., Mollace V The anti-inflammatory and antioxidant properties of n-3 PUFAs: Their role in cardiovascular protection. Biomedicines. 2020; 8 (9): 306. doi: 10.3390/biomedicines8090306
69. Sokolovska J., Dekante A., Baumane L., Pahirko L., Valeinis J., Dislere K., Rovite V, Pirags V, Sjakste N. Nitric oxide metabolism is impaired by type 1 diabetes and diabetic nephropathy. Biomed. Rep. 2020; 12 (5): 251-258. doi: 10.3892/br.2020.1288
70. Neuenschwander M., Barbaresko J., Pisch-ke C.R., Iser N., Beckhaus J., Schwingshackl L., Schlesinger S. Intake of dietary fats and fatty acids and the incidence of type 2 diabetes: A systematic review and dose-response meta-analysis of prospective observational studies. PLoS Med. 2020; 17 (12): e1003347. doi:10.1371/journal.pmed.1003347
71. Juarez-Hernandez E., Chavez-Tapia N.C., Uribe M., Barbero-Becerra V.J. Role of bioactive fatty acids in nonalcoholic fatty liver disease. Nutr. J. 2016; 15 (1): 72. doi: 10.1186/s12937-016-0191-8
72. Wijendran V, Hayes K.C. Dietary n-6 and n-3 fatty acid balance and cardiovascular health. Annu. Rev. Nutr. 2004; (24): 597-615. doi: 10.1146/annurev.nutr.24.012003.132106
73. Ding D., Li Y., Xiao M., Dong H., Lin J., Chen G., Chen Z., Tang Xi., Chen Y. Erythrocyte membrane polyunsaturated fatty acids are associated with incidence of metabolic syndrome in middle-aged and elderly people — an 8.8-year prospective study. J. Nutr. 2020; 150 (6): 1488-1498. https://doi.org/10.1093/jn/nxaa039
74. Елисеева О.С., Киреева Н.А., Першина А.С., Буторина О.Л., Бикбулатова С.М., Гарипова М.И. Исследование природы взаимодействий инсулина с поверхностью эритроцитов и состава гормонтранспортирующего комплекса плазмы крови человека. Вестн. ОГУ. 2009; (6): 476-478.
75. Suara S.B., Siassi F., Saaka M., Foroshani A.R., Asadi S., Sotoudeh G. Dietary fat quantity and quality in relation to general and abdominal obesity in women: a cross-sectional study from Ghana. Lipids Health Dis. 2020; 19 (1): 67. doi: 10.1186/s12944-020-01227-5
76. Diaf M., Khaled M.B., Sellam F. Correlation between dietary fat intake and atherogenic indices in normal, overweight and obese adults with or without type 2 diabetes. Romanian Journal of Diabetes Nutrition and Metabolic Diseases. 2015; 22 (4): 347-360. doi: 10.1515/rjdnmd-2015-0041
77. Parra D., Ramel A., Bandarra N., Kiely M., Martinez J.A., Thorsdottir I. A diet rich in long chain omega-3 fatty acids modulates satiety in overweight and obese volunteers during weight loss. Appetite. 2008; 51 (3): 676-680. doi: 10.1016/j.appet.2008.06.003
78. Jang H., Park K. Omega-3 and omega-6 polyunsaturated fatty acids and metabolic syndrome: A systematic review and meta-analysis. Clin. Nutr. 2020; 39 (3): 765-773. doi: 10.1016/j.clnu.2019.03.032
79. Naude C.E., Visser M.E., Nguyen K.A., Durao S., Schoonees A. Effects of total fat intake on bodyweight in children. Cochrane Database Syst. Rev. 2018; 2 (2): CD012960. doi: 10.1002/14651858.CD012960
80. Hooper L., Abdelhamid A.S., Jimoh O.F., Bunn D., Skeaff C.M. Effects of total fat intake on body fatness in adults. Cochrane Database Syst. Rev. 2020; 6 (6): CD013636. doi: 10.1002/14651858.CD013636
81. Hooper L., Martin N., Jimoh O.F., Kirk C., Foster E., Abdelhamid A.S. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev. 2020; 8: CD011737. doi: 10.1002/14651858.CD011737.pub3
Рецензия
Для цитирования:
Фурсов А.Б., Оспанов О.Б., Фурсов Р.А. Роль биоактивных липидов в метаболизме больных с ожирением и перспективы их применения в послеоперационном периоде. Сибирский научный медицинский журнал. 2021;41(3):12-24. https://doi.org/10.18699/SSMJ20210302
For citation:
Fursov A.B., Ospanov O.B., Fursov R.A. Role of bioactive lipids in metabolism of obese patients and prospects for their use in the postoperative period. Сибирский научный медицинский журнал. 2021;41(3):12-24. (In Russ.) https://doi.org/10.18699/SSMJ20210302