Elemental analysis insights into atherosclerotic calcification
https://doi.org/10.18699/SSMJ20210108
Abstract
Keywords
About the Authors
L. A. BogdanovRussian Federation
Leo A. Bogdanov
650002, Kemerovo, Sosnovy blvd., 6
N. Yu. Osyaev
Russian Federation
Nikolay Yu. Osyaev
650002, Kemerovo, Sosnovy blvd., 6
V. E. Markova
Russian Federation
Victoria E. Markova
650002, Kemerovo, Sosnovy blvd., 6
R. A. Mukhamadiyarov
Russian Federation
Rinat A. Mukhamadiyarov, candidate of biological sciences
650002, Kemerovo, Sosnovy blvd., 6
A. R. Shabaev
Russian Federation
Amin R. Shabaev
650002, Kemerovo, Sosnovy blvd., 6
A. G. Kutikhin
Russian Federation
Anton G. Kutikhin, candidate of biological sciences
650002, Kemerovo, Sosnovy blvd., 6
References
1. Shi X., Gao J., Lv Q., Cai H., Wang F., Ye R., Liu X. Calcification in atherosclerotic plaque vulnerability: Friend or foe? Front. Physiol. 2020; 11: 56. doi: 10.3389/fphys.2020.00056
2. Kelly-Arnold A., Maldonado N., Laudier D., Aikawa E., Cardoso L., Weinbaum S. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc. Natl. Acad. Sci. USA. 2013; 110 (26): 10741–10746. doi: 10.1073/pnas.1308814110
3. Petsophonsakul P., Furmanik M., Forsythe R., Dweck M., Schurink G.W., Natour E., Reutelingsperger C., Jacobs M., Mees B., Schurgers L. Role of vascular smooth muscle cell phenotypic switching and calcification in aortic aneurysm formation. Arterioscler. Thromb. Vasc. Biol. 2019; 39 (7): 1351–1368. doi: 10.1161/ATVBAHA.119.312787
4. Vengrenyuk Y., Carlier S., Xanthos S., Cardoso L., Ganatos P., Virmani R., Einav S., Gilchrist L., Weinbaum S. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc. Natl. Acad. Sci. USA. 2006; 103 (40): 14678–14683. doi: 10.1073/pnas.0606310103
5. Zhan Y., Zhang Y., Hou J., Lin G., Yu B. Relation between superficial calcifications and plaque rupture: An optical coherence tomography study. Can. J. Cardiol. 2017; 33 (8): 991–997. doi: 10.1016/j.cjca.2017.05.003
6. Akers E.J., Nicholls S.J., di Bartolo B.A. Plaque calcification: Do lipoproteins have a role? Arterioscler. Thromb. Vasc. Biol. 2019; 39 (10): 1902–1910. doi: 10.1161/ATVBAHA.119.311574
7. Otsuka F., Sakakura K., Yahagi K., Joner M., Virmani R. Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler. Thromb. Vasc. Biol. 2014; 34 (4): 724–736. doi: 10.1161/ATVBAHA.113.302642
8. Bäck M., Aranyi T., Cancela M.L., Carracedo M., Conceição N., Leftheriotis G., Macrae V., Martin L., Nitschke Y., Pasch A., Quaglino D., Rutsch F., Shanahan C., Sorribas V., Szeri F., Valdivielso P., Vanakker O., Kempf H. Endogenous calcification inhibitors in the prevention of vascular calcification: A consensus statement from the COST action EuroSoftCalcNet. Front. Cardiovasc. Med. 2019; 5: 196. doi: 10.3389/fcvm.2018.00196
9. Roijers R.B., Debernardi N., Cleutjens J.P., Schurgers L.J., Mutsaers P.H., van der Vusse G.J. Microcalcifications in early intimal lesions of atherosclerotic human coronary arteries. Am. J. Pathol. 2011; 178 (6): 2879–2887. doi: 10.1016/j.ajpath.2011.02.004
10. Carino A., Ludwig C., Cervellino A., Müller E., Testino A. Formation and transformation of calcium phosphate phases under biologically relevant conditions: Experiments and modelling. Acta Biomater. 2018; 74: 478–488. doi: 10.1016/j.actbio.2018.05.027
11. Chen J., Peacock J.R., Branch J., Merryman W.D. Biophysical analysis of dystrophic and osteogenic models of valvular calcification. J. Biomech. Eng. 2015; 137 (2): 020903. doi: 10.1115/1.4029115
12. Hutcheson J.D., Goettsch C., Bertazzo S., Maldonado N., Ruiz J.L., Goh W., Yabusaki K., Faits T., Bouten C., Franck G., Quillard T., Libby P., Aikawa M., Weinbaum S., Aikawa E. Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques. Nat. Mater. 2016; 15 (3): 335–343. doi: 10.1038/nmat4519
13. Burgmaier M., Milzi A., Dettori R., Burgmaier K., Marx N., Reith S. Co-localization of plaque macrophages with calcification is associated with a more vulnerable plaque phenotype and a greater calcification burden in coronary target segments as determined by OCT. PLoS One. 2018; 13 (10): e0205984. doi: 10.1371/journal.pone.0205984
14. Fuery M.A., Liang L., Kaplan F.S., Mohler E.R 3rd. Vascular ossification: Pathology, mechanisms, and clinical implications. Bone. 2018; 109: 28–34. doi: 10.1016/j.bone.2017.07.006
15. Pettenazzo E., Deiwick M., Thiene G., Molin G., Glasmacher B., Martignago F., Bottio T., Reul H., Valente M. Dynamic in vitro calcification of bioprosthetic porcine valves evidence of apatite crystallization. J. Thorac. Cardiovasc. Surg. 2001; 121 (3): 500–509. doi: 10.1067/mtc.2001.112464
16. Murungi J.I., Thiam S., Tracy R.E., Robinson J.W., Warner I.M. Elemental analysis of soft plaque and calcified plaque deposits from human coronary arteries and aorta. J. Environ. Sci. Health. A. Tox. Hazard. Subst. Environ. Eng. 2004; 39 (6): 1487–1496. doi:10.1081/ese-120037848
17. Balachandran K., Sucosky P., Jo H., Yoganathan A.P. Elevated cyclic stretch induces aortic valve calcification in a bone morphogenic protein-dependent manner. Am. J. Pathol. 2010; 177 (1): 49–57. doi: 10.2353/ajpath.2010.090631
18. Mikroulis D., Mavrilas D., Kapolos J., Koutsoukos P.G., Lolas C. Physicochemical and microscopical study of calcific deposits from natural and bioprosthetic heart valves. Comparison and implications for mineralization mechanism. J. Mater. Sci. Mater. Med. 2002; 13 (9): 885–889. doi: 10.1023/a:1016556514203
19. Cheng C.L., Chang H.H., Huang P.J., Wang W.C., Lin S.Y. Ex vivo assessment of valve thickness/ calcification of patients with calcific aortic stenosis in relation to in vivo clinical outcomes. J. Mech. Behav. Biomed. Mater. 2017; 74: 324–332. doi: 10.1016/j.jmbbm.2017.06.020
20. Cottignoli V., Relucenti M., Agrosì G., Cavarretta E., Familiari G., Salvador L., Maras A. Biological niches within human calcified aortic valves: towards understanding of the pathological biomineralization process. Biomed. Res. Int. 2015; 2015: 542687. doi: 10.1155/2015/542687
21. Mangialardo S., Cottignoli V., Cavarretta E., Salvador L., Postorino P., Maras A. Pathological biominerals: raman and infrared studies of bioapatite deposits in human heart valves. Appl. Spectrosc. 2012; 66 (10): 1121–1127. doi: 10.1366/12-06606
22. Cottignoli V., Cavarretta E., Salvador L., Valfré C., Maras A. Morphological and chemical study of pathological deposits in human aortic and mitral valve stenosis: a biomineralogical contribution. Patholog. Res. Int. 2015; 2015: 342984. doi: 10.1155/2015/342984
Review
For citations:
Bogdanov L.A., Osyaev N.Yu., Markova V.E., Mukhamadiyarov R.A., Shabaev A.R., Kutikhin A.G. Elemental analysis insights into atherosclerotic calcification. Сибирский научный медицинский журнал. 2021;41(1):81-90. (In Russ.) https://doi.org/10.18699/SSMJ20210108