Preview

Сибирский научный медицинский журнал

Advanced search

The role of C-peptide in regulation of the insulin signaling system (systematic review)

https://doi.org/10.18699/SSMJ20210103

Abstract

The C-peptide is a fragment of proinsulin, the cleavage of which forms active insulin. In recent years, new evidence has emerged indicating that C-peptide is involved not only in the processing of insulin in the secretory granules of pancreatic β-cells, but also has an important regulatory effect on the functions of many organs and tissues. C-peptide mediates physiological effects through signaling pathways by binding to a specific receptor on the cell membrane. Intracellular signaling occurs through the G-protein and Ca2+- dependent pathways, which leads to the activation and increased expression of endothelial nitric oxide synthase, Na+/K+-ATPase, and important transcription factors involved in apoptosis, anti-inflammatory and other intracellular defense mechanisms. One of the most important physiological effects of C-peptide is the regulation and modification of insulin signaling mechanisms. The nature of the effect of C-peptide on the insulin signaling system depends on the concentration of insulin. It is assumed that under conditions of low insulin levels, the C-peptide receptor binds to Gi/o-proteins and leads to increased activation of processes induced by insulin. In this case, the C-peptide acts as insulin-mimetic peptide. Under high insulin conditions, the C-peptide receptor binds to Gq/11-proteins and leads to activation of protein kinase C with subsequent weakening of insulin-related signaling cascades. This review presents new facts indicating the participation of C-peptide in the regulation of the insulin signaling system.

About the Authors

O. N. Poteryaeva
Institute of Biochemistry of Federal Research Center of Fundamental and Translation Medicine
Russian Federation

Olga N. Poteryaeva, doctor of medical sciences

630117, Novosibirsk, Timakov str., 2



I. F. Usynin
Institute of Biochemistry of Federal Research Center of Fundamental and Translation Medicine
Russian Federation

Ivan F. Usynin, doctor of biological sciences

630117, Novosibirsk, Timakov str., 2



References

1. Balabolkin M.I. Endocrinology. 2ts ed. Moscow: Universum Publishing, 1998. 416 p. [In Russian].

2. Shpakov A.O., Derkach K.V., Basova N.E. Proinsulin C-peptide. Saint-Petersburg: Politekh-Press, 2019. 210 c. [In Russian].

3. Wahren J. C-peptide and the pathophysiology of microvascular complications of diabetes. J. Intern. Med. 2017; 281 (1): 3–6. doi: 10.1111/joim.12541

4. Landreh M., Johansen J., Wahren J., Jörnvall H. The structure, molecular interactions and bioactivities of proinsulin C-peptide correlate with a tripartite molecule. Biomol. Concepts. 2014; 5 (2): 109–118. doi: 10.1515/bmc-2014-0005

5. Poteryaeva O.N., Usynin I.F. Diagnostic value and regulatory functions of proinsulin. Klinicheskaya laboratornaya diagnostika = Clinical Laboratory Diagnostics. 2019; 64 (7): 397–404. [In Russian]. doi: 10.18821/0869-2084-2019-64-7-397-404

6. Derkach K.V., Perminova A.A., Buzanakov D.M., Shpakov A.O. Intranasal administration of proinsulin C-peptide enhances the stimulating effect of insulin on insulin system activity in the hypothalamus of diabetic rats. Bull. Exp. Biol. Med. 2019; 167 (3): 351–355. doi: 10.1007/s10517-019-04525-W

7. Wahren J., Larsson C. С-peptide: new findings and therapeutic possibilities. Diabetes Res. Clin. Pract. 2015; 107 (3): 309–319. doi: 10.1016/j.diabres.2015.01.016

8. Poteryaeva O.N., Usynin I.F. Molecular mechanisms of action and physiological effects of proinsulin C-peptide (systematic review). Biomeditsinskaya khimiya = Biomedical Chemistry. 2020; 66 (3): 196–207. [In Russian]. doi: 10.18097/PBMC20206603196

9. Shpakov A.O., Granstrem O.K. C-peptide structure, functions and molecular mechanisms of action. Tsitologiya = Cell and Tissue Biology. 2013; 55 (1): 16–27. [In Russian].

10. Yaribeygi H., Maleki M., Sathyapalan T., Sahebkar A. The effect of C-peptide on diabetic nephropathy: a review of molecular mechanisms. Life Sci. 2019; 237: 116950. doi: 10.1016/j.lfs.2019.116950

11. Brunskill N.J. C-peptide and diabetic kidney disease. J. Inter. Med. 2017; 281 (1): 41–51. doi: 10.1111/joim.12548

12. Li Y., Li X., He K., Li B., Liu K., Qi J., Wang H., Wang Y., Luo W. C-peptide prevents NF-kb from recruiting p300 and binding to the iNOS promoter in diabetic nephropathy. FASEB Journal. 2018; 32 (4): 2269–2279. doi: 10.1096/fj201700891R

13. Wahren J., Foyt H., Daniels M., Arezzo J.C. Long-acting C-peptide and neuropathy in type 1 diabetes: A 12-month clinical trial. Diabetes Care. 2016; 39 (4): 596–602. doi: 10.2337/dc15-2068

14. Lim Y.-C., Bhatt M.P., Kwon M.H., Park D., Lee S., Choe J., Hwang J., Kim Y.M., Ha K.S. Prevention of VEGF-mediated microvascular permeability by C-peptide in diabetic mice. Cardiovasc. Res. 2014; 101 (1): 155–164. doi: 10.1093/cvr/cvt238

15. Kolar G.R., Grote S.M., Yosten G.L.C. Targe_ ting orphan G-protein coupled receptors for the treatment of diabetes and its complication: C-peptide and GPR146. J. Inter. Med. 2017; 281 (1): 25–40. doi: 10.1111/joim.12528

16. Chung J.O., Cho D.H., Chung M.Y. Relationship between serum C-peptide level and diabetic retinopathy according to estimated glomerular filtration rate in patients with type 2 diabetes. J. Diabetes Complications. 2015; 29 (3): 350–355. doi: 10.1016/j.jdiacomp.2014.12.013

17. Cifarelli V., Geng X., Styche A., Lakomy M., Trucco M., Luppi P. C-peptide reduces high glucoseinduced apoptosis of endothelial cells and decreases NAD(P)H-oxidase reactive oxygen species generation. Diabetologia. 2011; 54 (10): 2702–2712. doi: 10.1007/s00125-011-2251-0

18. Bhatt M.P., Lim Y.C., Hwang J., Na S., Kim Y.M., Ha K.S. C-peptide prevents hyperglycemia0induced endothelial apoptosis through inhibition of reactive oxygen species- mediated transglutaminase 2 activation. Diabetes. 2013; 62 (1): 243–253. doi: 10.2337/db12-0293

19. Bhatt M.P., Lim Y.-C., Kim Y.-M., Ha K.-S. C-peptide activates AMPKα and prevents ROS-mediated mitochondrial fission and endothelial apoptosis in diabetes. Diabetes. 2013; 62 (11): 3851–3862. doi: 10.2337/db13-0039

20. Yosten G.L.C., Kolar G.R. The physiology of proinsulin C-peptid unanswered questions and a proposed model. Physiology (Bethesda). 2015; 30 (4): 327–332. doi: 10.1152/physiol.00008.2015

21. Bo S., Gentile L., Castiglione A., Prandi V., Canil S., Ghigo E., Ciccone G. C-peptide and the risk for incident complications and mortality in type 2 diabetic patients: a retrospective cohort study after a 14-year follow-up. Eur. J. Endocrinol. 2012; 167 (2): 173–180. doi: 10.1530/EJE-12-0085

22. Lachin J.M., McGee P., Palmer J.P., DCCT/ EDIC Research Group. Impact of C-peptide preservation on metabolic and clinical outcomes in the diabetes control and complications Trial. Diabetes. 2014; 63 (2): 739–748. doi: 10.2337/db13-0881

23. Ekberg K., Brismar T., Johansson B.L., Lindstrom P., Juntti-Berggren L., Norrby A., Berne C., Arnqvist H.J., Bolinder J., Wahren J. С-Pepetide replacement therapy and sensory nerve function in type 1 diabetic neuropathy. Diabetes Care. 2007; 30 (1): 71–76. doi: 10.2337/dc06-1274

24. Tkachuk V.A., Vorotnikov A.V. Molecular mechanisms of insulin resistance development. Saharnyy diabet = Diabetes Mellitus. 2014; 2: 29–40. [In Russian]. doi: 10.14341/DM2014229-40

25. Al-Rasheed N.M., Willars GB., Brunskill N.J. C-peptide signals via Gαi to protect against TNF-αmediated apoptosis of opossum kidney proximal tubular cells. J. Am. Soc. Nephrol. 2006; 17 (4): 986–995. doi: 10.1681/ASN.2005080797

26. Yosten G.L.C., Kolar G.R., Redinger L.J., Samson W.K. Evidence for an interaction between proinsulin C-peptide and GPR146. J. Endocrinol. 2013; 218 (2): 986–995. doi: 10.1530/JOE-13-0203

27. Shpakov A.O. Mechanisms of action and therapeutic potential of proinsulin C-peptide. Zhurnal evolyutsionnoy biokhimii i fiziologii = Journal of Evolutionary Biochemistry and Physiology. 2017; 53 (3): 161-–168. [In Russian].

28. Nerelius C., Alvelius G., Jörnvall H. N-terminal segment of proinsulin C-peptide active in insulin interaction/desaggregation. Biochem. Biophys. Res. Commun. 2010; 403 (3-4): 462–467. doi: 10.1016/j.bbrc.2010.11.058

29. Grunberger G., Sima A.A. The C-peptide signaling. Exp. Diabesity Res. 2004; 5 (1): 25–36. doi: 10.1080/15438600490424497

30. Li Z.G., Zhang W., Sima A.A. C-peptide enhances insulin-mediated cell growth and protection against high glucose-induced apoptosis in SH-SY5Y cells. Diabetes Metab. Res. Rev. 2003; 19 (5): 375–385. doi: 10.1002/dmrr.389

31. Wahren J., Callas Å, Sima A.A.F. The clinical potential of C-peptide replacement in type 1 diabetes. Diabetes. 2012; 61 (4): 761–772. doi: 10.2337/db111423

32. Zierath J.R., Handberg A., Tally M., WallbergHenriksson H. C-peptide stimulates glucose transport in isolated human skeletal muscle independent of insulin receptor and tyrosine kinase activation. Diabetologia. 1996; 39 (3): 306–313. doi: 10.1007/BF00418346

33. Li L., Oshida Y., Kusunoki M., Yamanouchi K., Johansson B.L., Wahren J., Sato Y. Rat C-peptide I and C-peptide II stimulate glucose utilization in STZinduced diabetic rats. Diabetologia. 1999; 42 (8): 958–964. doi: 10.1007/s001250051254

34. Kubota M., Sato Y., Khookhor O., Ekberg K., Chibalin A.V., Wahren J. Enhanced insulin action following subcutaneous co-administration of insulin and C-peptide in rats. Diabetes Metab. Res. Rev. 2014; 30 (2): 124–131. doi: 10.1002/dmrr.2471

35. Shafqat J., Melles E., Sigmundsson K., Johansson B.-L., Ekberg K., Alvelius G., Henriksson M., Johansson J., Wahren J., Jörnvall H. Proinsulin C-peptide elicits disaggregation of insulin resulting in enhanced physiological insulin effects. Cell. Mol. Life Sci. 2006; 63 (15): 1805–1811. doi: 10.1007/s00018-006-6204-6

36. Wilhelm B., Kann P., Pfutzner A. Influence of C-peptide on glucose utilization. Exp. Diabetes Res. 2008; 2008: 769483. doi: 10.1155/2008/769483

37. Wallerath T., Kunt T., Forst T., Closs E.L., Lehmann R., Flohr T., Gabriel M., Schäfer D., Göpfert A., Pfützner A., Beyer J., Förstermann U. Stimulation of endothelial nitric oxide synthase by proinsulin C-peptide. Nitric Oxid. 2003; 9 (2): 95–102. doi: 10.1016/j.niox.2003.08.004

38. Jensen M.E., Messina E.J. C-peptide induces a concentration-dependent dilation of skeletal muscle arterioles only in presence of insulin. Am. J. Physiol. 1999; 276 (4): 1223–1228. doi: 10.1152/ajpheart.1999.276.4.H1223

39. Hills C.E., Brunskill N.J. C-peptide and its intracellular signaling. Rev. Diabet Stud. 2009; 6 (3): 138–147. doi: 10.1900/RDS.2009.6.138

40. Richards J.P., Yosten G.L., Kolar G.R., Jones C.W., Stephenson A.H., Ellsworth M.L., Sprague R.S. Low O2 -induced ATP release from erythrocytes of humans with Type 2 diabetes is restored by physiological ratios of C-peptide and insulin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014; 307 (7): 862–868. doi: 10.1152/ajpregu.00206.2014

41. Ellsworth M.L., Sprague R.S. Regulation of blood flow distribution in skeletal muscle: role of erythrocyte-released ATP. J. Physiol. 2012; 590 (20): 4985–4991. doi: 10.1113/jphysiol.2012.233106

42. Newsome C.L. Investigation into the biological importance and function of proinsulin C-peptide. Theses, Dissertations and Capstones. 2015. 958. Available at: https://mds.marshall.edu/etd/958


Review

Views: 675


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)