Preview

Сибирский научный медицинский журнал

Расширенный поиск

Роль С-пептида проинсулина в регуляции инсулиновой сигнальной системы (систематический обзор)

https://doi.org/10.18699/SSMJ20210103

Полный текст:

Аннотация

С-пептид является фрагментом проинсулина, в результате отщепления которого образуется активный инсулин. За последние годы появилась новая информация, свидетельствующая о том, что С-пептид участвует не только в процессинге инсулина в секреторных гранулах панкреатических β-клеток, но и оказывает важное регуляторное влияние на функции многих органов и тканей. С-пептид осуществляет физиологические эффекты через сигнальные пути, связываясь со специфическим рецептором на клеточной мембране. Внутриклеточная передача сигналов происходит через G-белок и Ca2+ -зависимые пути, что приводит к активации и повышенной экспрессии эндотелиальной синтазы оксида азота, Na+/K+-ATP-азы и факторов транскрипции, участвующих в апоптозе, противовоспалительных и других внутриклеточных защитных механизмах. Одним из наиболее важных физиологических эффектов С-пептида является регулирование и модифицирование сигнальных механизмов инсулина. Показано, что характер влияния С-пептида на инсулиновую сигнальную систему зависит от концентрации гормона: при низком уровне последнего рецептор С-пептида связывается с Gi/o-белками, что приводит к усилению активации индуцированных инсулином процессов, при высоком взаимодействует с Gq/11-белками, вследствие чего активируется протеинкиназа C и ослабляются каскады передачи сигналов, связанных с инсулином. В данном обзоре представлены новые факты, свидетельствующие об участии С-пептида в регуляции инсулиновой сигнальной системы.

Об авторах

О. Н. Потеряева
НИИ биохимии ФИЦ фундаментальной и трансляционной медицины
Россия

Ольга Николаевна Потеряева, д.м.н.

630117, г. Новосибирск, ул. Тимакова, 2



И. Ф. Усынин
НИИ биохимии ФИЦ фундаментальной и трансляционной медицины
Россия

Иван Федорович Усынин, д.б.н.

630117, г. Новосибирск, ул. Тимакова, 2



Список литературы

1. Балаболкин М.И. Эндокринология: учебник. 2-е изд. М.: Универсум паблишинг; 1998. 416 с.

2. Шпаков А.О., Деркач К.В., Басова Н.Е. С-пептид проинсулина. СПб.: Политех-Пресс, 2019. 210 c.

3. Wahren J. C-peptide and the pathophysiology of microvascular complications of diabetes. J. Intern. Med. 2017; 281 (1): 3–6. doi: 10.1111/joim.12541

4. Landreh M., Johansen J., Wahren J., Jörnvall H. The structure, molecular interactions and bioactivities of proinsulin C-peptide correlate with a tripartite molecule. Biomol. Concepts. 2014; 5 (2): 109–118. doi: 10.1515/bmc-2014-0005

5. Потеряева О.Н., Усынин И.Ф. Диагностическое значение и регуляторные функции проинсулина. Клин. лаб. диагност. 2019; 64 (7): 397–404. doi: 10.18821/0869-2084-2019-64-7-397-404

6. Деркач К.В., Перминова А.А., Бузанаков Д.М., Шпаков А.О. Интраназально вводимый С-пептид проинсулина усиливает стимуляцию инсулином активности инсулиновой системы в гипоталамусе диабетических крыс. Бюл. эксперим. биологии и медицины. 2019; 167 (3): 324–329.

7. Wahren J., Larsson C. С-peptide: new findings and therapeutic possibilities. Diabetes Res. Clin. Pract. 2015; 107 (3): 309–319. doi: 10.1016/j.diabres.2015.01.016

8. Потеряева О.Н., Усынин И.Ф. Молекулярные механизмы действия и физиологические эффекты С-пептида проинсулина (систематический обзор). Биомед. химия. 2020; 66 (3): 196–207. doi: 10.18097/PBMC20206603196

9. Шпаков А.О., Гранстрем О.К. C-пептид: структура, функции и молекулярные механизмы действия. Цитология. 2013; 55 (1): 16–27.

10. Yaribeygi H., Maleki M., Sathyapalan T., Sahebkar A. The effect of C-peptide on diabetic nephropathy: a review of molecular mechanisms. Life Sci. 2019; 237: 116950. doi: 10.1016/j.lfs.2019.116950

11. Brunskill N.J. C-peptide and diabetic kidney disease. J. Inter. Med. 2017; 281 (1): 41–51. doi: 10.1111/joim.12548

12. Li Y., Li X., He K., Li B., Liu K., Qi J., Wang H., Wang Y., Luo W. C-peptide prevents NF-kb from recruiting p300 and binding to the iNOS promoter in diabetic nephropathy. FASEB Journal. 2018; 32 (4): 2269–2279. doi: 10.1096/fj201700891R

13. Wahren J., Foyt H., Daniels M., Arezzo J.C. Long-acting C-peptide and neuropathy in type 1 diabetes: A 12-month clinical trial. Diabetes Care. 2016; 39 (4): 596–602. doi: 10.2337/dc15-2068

14. Lim Y.-C., Bhatt M.P., Kwon M.H., Park D., Lee S., Choe J., Hwang J., Kim Y.M., Ha K.S. Prevention of VEGF-mediated microvascular permeability by C-peptide in diabetic mice. Cardiovasc. Res. 2014; 101 (1): 155–164. doi: 10.1093/cvr/cvt238

15. Kolar G.R., Grote S.M., Yosten G.L.C. Targe_ ting orphan G-protein coupled receptors for the treatment of diabetes and its complication: C-peptide and GPR146. J. Inter. Med. 2017; 281 (1): 25–40. doi: 10.1111/joim.12528

16. Chung J.O., Cho D.H., Chung M.Y. Relationship between serum C-peptide level and diabetic retinopathy according to estimated glomerular filtration rate in patients with type 2 diabetes. J. Diabetes Complications. 2015; 29 (3): 350–355. doi: 10.1016/j.jdiacomp.2014.12.013

17. Cifarelli V., Geng X., Styche A., Lakomy M., Trucco M., Luppi P. C-peptide reduces high glucoseinduced apoptosis of endothelial cells and decreases NAD(P)H-oxidase reactive oxygen species generation. Diabetologia. 2011; 54 (10): 2702–2712. doi: 10.1007/s00125-011-2251-0

18. Bhatt M.P., Lim Y.C., Hwang J., Na S., Kim Y.M., Ha K.S. C-peptide prevents hyperglycemia0induced endothelial apoptosis through inhibition of reactive oxygen species- mediated transglutaminase 2 activation. Diabetes. 2013; 62 (1): 243–253. doi: 10.2337/db12-0293

19. Bhatt M.P., Lim Y.-C., Kim Y.-M., Ha K.-S. C-peptide activates AMPKα and prevents ROS-mediated mitochondrial fission and endothelial apoptosis in diabetes. Diabetes. 2013; 62 (11): 3851–3862. doi: 10.2337/db13-0039

20. Yosten G.L.C., Kolar G.R. The physiology of proinsulin C-peptid unanswered questions and a proposed model. Physiology (Bethesda). 2015; 30 (4): 327–332. doi: 10.1152/physiol.00008.2015

21. Bo S., Gentile L., Castiglione A., Prandi V., Canil S., Ghigo E., Ciccone G. C-peptide and the risk for incident complications and mortality in type 2 diabetic patients: a retrospective cohort study after a 14-year follow-up. Eur. J. Endocrinol. 2012; 167 (2): 173–180. doi: 10.1530/EJE-12-0085

22. Lachin J.M., McGee P., Palmer J.P., DCCT/ EDIC Research Group. Impact of C-peptide preservation on metabolic and clinical outcomes in the diabetes control and complications Trial. Diabetes. 2014; 63 (2): 739–748. doi: 10.2337/db13-0881

23. Ekberg K., Brismar T., Johansson B.L., Lindstrom P., Juntti-Berggren L., Norrby A., Berne C., Arnqvist H.J., Bolinder J., Wahren J. С-Pepetide replacement therapy and sensory nerve function in type 1 diabetic neuropathy. Diabetes Care. 2007; 30 (1): 71–76. doi: 10.2337/dc06-1274

24. Ткачук В.А., Воротников А.В. Молекулярные механизмы развития резистентности к инсулину. Сахар. диабет. 2014; 2: 29–40. doi: 10.14341/DM2014229-40

25. Al-Rasheed N.M., Willars GB., Brunskill N.J. C-peptide signals via Gαi to protect against TNF-αmediated apoptosis of opossum kidney proximal tubular cells. J. Am. Soc. Nephrol. 2006; 17 (4): 986–995. doi: 10.1681/ASN.2005080797

26. Yosten G.L.C., Kolar G.R., Redinger L.J., Samson W.K. Evidence for an interaction between proinsulin C-peptide and GPR146. J. Endocrinol. 2013; 218 (2): 986–995. doi: 10.1530/JOE-13-0203

27. Шпаков А.О. Механизмы действия и терапевтический потенциал С-пептида проинсулина. Журн. эволюц. биохимии и физиологии. 2017; 53 (3): 161–168.

28. Nerelius C., Alvelius G., Jörnvall H. N-terminal segment of proinsulin C-peptide active in insulin interaction/desaggregation. Biochem. Biophys. Res. Commun. 2010; 403 (3-4): 462–467. doi: 10.1016/j.bbrc.2010.11.058

29. Grunberger G., Sima A.A. The C-peptide signaling. Exp. Diabesity Res. 2004; 5 (1): 25–36. doi: 10.1080/15438600490424497

30. Li Z.G., Zhang W., Sima A.A. C-peptide enhances insulin-mediated cell growth and protection against high glucose-induced apoptosis in SH-SY5Y cells. Diabetes Metab. Res. Rev. 2003; 19 (5): 375–385. doi: 10.1002/dmrr.389

31. Wahren J., Callas Å, Sima A.A.F. The clinical potential of C-peptide replacement in type 1 diabetes. Diabetes. 2012; 61 (4): 761–772. doi: 10.2337/db111423

32. Zierath J.R., Handberg A., Tally M., WallbergHenriksson H. C-peptide stimulates glucose transport in isolated human skeletal muscle independent of insulin receptor and tyrosine kinase activation. Diabetologia. 1996; 39 (3): 306–313. doi: 10.1007/BF00418346

33. Li L., Oshida Y., Kusunoki M., Yamanouchi K., Johansson B.L., Wahren J., Sato Y. Rat C-peptide I and C-peptide II stimulate glucose utilization in STZinduced diabetic rats. Diabetologia. 1999; 42 (8): 958–964. doi: 10.1007/s001250051254

34. Kubota M., Sato Y., Khookhor O., Ekberg K., Chibalin A.V., Wahren J. Enhanced insulin action following subcutaneous co-administration of insulin and C-peptide in rats. Diabetes Metab. Res. Rev. 2014; 30 (2): 124–131. doi: 10.1002/dmrr.2471

35. Shafqat J., Melles E., Sigmundsson K., Johansson B.-L., Ekberg K., Alvelius G., Henriksson M., Johansson J., Wahren J., Jörnvall H. Proinsulin C-peptide elicits disaggregation of insulin resulting in enhanced physiological insulin effects. Cell. Mol. Life Sci. 2006; 63 (15): 1805–1811. doi: 10.1007/s00018-006-6204-6

36. Wilhelm B., Kann P., Pfutzner A. Influence of C-peptide on glucose utilization. Exp. Diabetes Res. 2008; 2008: 769483. doi: 10.1155/2008/769483

37. Wallerath T., Kunt T., Forst T., Closs E.L., Lehmann R., Flohr T., Gabriel M., Schäfer D., Göpfert A., Pfützner A., Beyer J., Förstermann U. Stimulation of endothelial nitric oxide synthase by proinsulin C-peptide. Nitric Oxid. 2003; 9 (2): 95–102. doi: 10.1016/j.niox.2003.08.004

38. Jensen M.E., Messina E.J. C-peptide induces a concentration-dependent dilation of skeletal muscle arterioles only in presence of insulin. Am. J. Physiol. 1999; 276 (4): 1223–1228. doi: 10.1152/ajpheart.1999.276.4.H1223

39. Hills C.E., Brunskill N.J. C-peptide and its intracellular signaling. Rev. Diabet Stud. 2009; 6 (3): 138–147. doi: 10.1900/RDS.2009.6.138

40. Richards J.P., Yosten G.L., Kolar G.R., Jones C.W., Stephenson A.H., Ellsworth M.L., Sprague R.S. Low O2 -induced ATP release from erythrocytes of humans with Type 2 diabetes is restored by physiological ratios of C-peptide and insulin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014; 307 (7): 862–868. doi: 10.1152/ajpregu.00206.2014

41. Ellsworth M.L., Sprague R.S. Regulation of blood flow distribution in skeletal muscle: role of erythrocyte-released ATP. J. Physiol. 2012; 590 (20): 4985–4991. doi: 10.1113/jphysiol.2012.233106

42. Newsome C.L. Investigation into the biological importance and function of proinsulin C-peptide. Theses, Dissertations and Capstones. 2015. 958. Available at: https://mds.marshall.edu/etd/958


Для цитирования:


Потеряева О.Н., Усынин И.Ф. Роль С-пептида проинсулина в регуляции инсулиновой сигнальной системы (систематический обзор). Сибирский научный медицинский журнал. 2021;41(1):33-43. https://doi.org/10.18699/SSMJ20210103

For citation:


Poteryaeva O.N., Usynin I.F. The role of C-peptide in regulation of the insulin signaling system (systematic review). Siberian Scientific Medical Journal. 2021;41(1):33-43. (In Russ.) https://doi.org/10.18699/SSMJ20210103

Просмотров: 49


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)