Preview

Сибирский научный медицинский журнал

Advanced search

Some morphological factors of resistance of the bronchial wall to the development of chronic obstructive lung disease in smoking individuals

https://doi.org/10.15372/SSMJ20200608

Abstract

According to current epidemiological studies, chronic obstructive pulmonary disease (COPD) develops in only 15-20 % of smokers. This suggests that exposure to tobacco smoke is just a trigger of the pathological process, and other pathophysiological factors play a key role in the development of COPD. The aim of the study was to perform morphological analysis of bronchial mucosa features in smokers with and without chronic obstructive pulmonary disease.

Material and research methods. Morphological and electron-microscopic analysis of biopsy samples of the bronchial mucosa of smoking patients with (n = 40) and without (n = 30) chronic obstructive pulmonary disease was carried out. The study involved men (80.2 % of men) and women aged 42 to 67 years (62.3 ± 2.24 years) with smoking experience of more than 20 years and smoking intensity of 20-45 pack-years. In the main group was a verified diagnosis of COPD. All patients of the studied groups underwent morphological, morphometric counting of bulk densities of various types of epithelial cells and structures of their lamina propria of the bronchial mucosa, as well as the density of inflammatory infiltrate and various cell populations, immunohistochemical (typing of CD4- and CD8positive lymphocytes, expression of transforming growth factor β1 receptors) and electron microscopic analysis of bronchobioptates.

Results and discussion. Smokers without chronic obstructive pulmonary disease develop exudative inflammation, which does not violate the structural architectonics of the epithelial layer, but causes activation of proteinsynthetic and energy processes in the epithelial cells of the bronchial wall. With prolonged exposure to tobacco smoke associated with the development of chronic obstructive pulmonary disease, chronic neutrophilic inflammation forms in the bronchial mucosa, leading to a violation of the functional morphology of the vessels and epithelial cells of the bronchial mucosa, followed by remodeling of the bronchial wall.

About the Authors

E. A. Gereng
Siberian State Medical University of Minzdrav of Russia
Russian Federation

Elena A. Gereng - doctor of medical sciences.

634050, Tomsk, Moskovsky path, 2



I. V. Suhodolo
Siberian State Medical University of Minzdrav of Russia
Russian Federation

Irina V. Suhodolo - doctor of medical sciences, professor.

634050, Tomsk, Moskovsky path, 2



R. I. Pleshko
Siberian State Medical University of Minzdrav of Russia
Russian Federation

Raisa I. Pleshko - doctor of medical sciences, professor.

634050, Tomsk, Moskovsky path, 2



E. B. Bukreeva
Siberian State Medical University of Minzdrav of Russia
Russian Federation

Ekaterina B. Bukreeva - doctor of medical sciences, professor.

634050, Tomsk, Moskovsky path, 2



A. A. Bulanova
Siberian State Medical University of Minzdrav of Russia
Russian Federation

Anna А. Bulanova - candidate of medical sciences.

634050, Tomsk, Moskovsky path, 2



I. S. Kremis
Siberian State Medical University of Minzdrav of Russia
Russian Federation

Ivan S. Kremis

634050, Tomsk, Moskovsky path, 2



T. S. Klyushina
Siberian State Medical University of Minzdrav of Russia
Russian Federation

Tatyana S. Klyushina

634050, Tomsk, Moskovsky path, 2



References

1. Global strategy for diagnosis, treatment and prevention of chronic obstructive pulmonary disease (GOLD). M: Russian Respiratory Society, 2017. [In Russian]. doi:10.18093/0869-0189-2017-27-2-274-282

2. Nepomnyashchikh G.I. Biopsy of the bronchi: morphogenesis of general pathological processes in lung. Moscow, 2005. 384 p. [In Russian].

3. Dedov I.I., Smirnova O.M., Gorelyshev A.S. Stress of the endoplasmic reticulum: a cytological scenario of the pathogenesis of human diseases. Problemy endo-crinologii = Problems of Endocrinology. 2012; (5): 57-65. [In Russian].

4. Avtandilov G.G. Fundamentals of quantitative pathological anatomy. Moscow: Meditsina, 2002. 240 p. [In Russian].

5. Nakamura M., Nakamura H., Minematsu N., Chubachi S., Miyazaki M., Yoshida S., Tsuduki K., Shirahata T., Mashimo S., Takahashi S., Nakajima T., Tateno H., Fujishima S., Betsuyaku T. Plasma cytokine profiles related to smoking-sensitivity and phenotypes of chronic obstructive pulmonary disease. Biomarkers. 2014. 19 (5): 368-377. doi: 10.3109/1354750X.2014.915342

6. Soltani A.R., Ewe Y.P., Lim Z.S., Sohal S.S., Reid D., Weston S., Wood-Baker R., Walters E.H. Mast cells in COPD airways: relationship to bronchodilator responsiveness and angiogenesis. Eur. Respir. J. 2016; 39 (6): 1361-1367. doi: 10.1183/09031936.00084411

7. Boucherat O., Boczkowski J., Jeannotte L., Delacourt C. Cellular and molecular mechanisms of goblet cell metaplasia in the respiratory airways. Exp. Lung Res. 2016; 39 (4): 207-216. doi: 10.3109/01902148.2013.791733

8. Metcalfe H.J., Lea S., Hughes D., Khalaf R., Abbott-Banner K., Singh D. Effects of cigarette smoke on Tolllike receptor (TLR) activation of chronic obstructive pulmonary disease (COPD) macrophages. Clin. Exp. Immunol. 2014; 176 (3): 461-472. doi: 10.1111/cei.12289

9. Givi M.E., Givi M.E., Folkerts G., Mortaz E. Dendritic cells in pathogenesis of COPD. Curr. Pharm. Des. 2016; 18 (16): 2329-2335. doi: 10.2174/138161212800166068

10. Hoffmann R.F., Zarrintan S.F., Brandenburg S.M., Kol A., de Bruin H.G., Jafari Sh., Dijk F., Kalicharan D., Kelders M., Gosker H.R., Hacken N.H.T., van der Want J.J., van Oosterhout A.J., Heijink I.H. Prolonged cigarette smoke exposure alters mitochondrial structure and function in airway epithelial cells. Resp. Res. 2013; 14 (1): 94-97. doi: 10.1186/14659921-14-97

11. Hacievliyagil S.S., Mutlu L.C., Temel i. Airway inflammatory markers in chronic obstructive pulmonary disease patients and healthy smokers. Niger. J. Clin. Pract. 2013; 16 (1): 76-81. doi: 10.4103/11193077.106771

12. Hara H., Araya J., Ito S., Kobayashi K., Taka-saka N., Yoshii Y., Wakui H., Kojima J., Shimizu K., Numata T., Kawaishi M., Kamiya N., Odaka M., Mori-kawa T., Kaneko Y., Nakayama K., Kuwano K. Mitochondrial fragmentation in cigarette smoke-induced bronchial epithelial cell senescence. Am. J. Physiol. Lung Cell. 2013; 305 (10): 737-746. doi: 10.1152/aj-plung.00146.2013

13. Hackett T.L., Shaheen F., Wright J.L., Wright J.L., Churg A. Fibroblast signal transducer and activator of transcription 4 drives cigarette smoke-induced airway fibrosis. Am. J. Respir. Cell Mol. Biol. 2014; 51 (6): 830-839. doi: 10.1165/rcmb.2018-0369OC

14. Berenson C.S., Kruzel R.L., Eberhardt E., Sethi S. Phagocytic dysfunction of human alveolar macrophages and severity of chronic obstructive pulmonary disease. J. Infect. Dis. 2013; 208 (12): 2036-2045. doi: 10.1093/infdis/jit400

15. Klar J., Blomstrand P., Brunmark C., Bad-hai J., Hakansson H.F., Brange C.S., Bergendal B., Dahl N. Fibroblast growth factor 10 haploinsufficiency causes chronic obstructive pulmonary disease. J. Med. Genet. 2011; 48 (10): 705-709. doi: 10.1136/jmedgen-et-2015-100166


Review

For citations:


Gereng E.A., Suhodolo I.V., Pleshko R.I., Bukreeva E.B., Bulanova A.A., Kremis I.S., Klyushina T.S. Some morphological factors of resistance of the bronchial wall to the development of chronic obstructive lung disease in smoking individuals. Сибирский научный медицинский журнал. 2020;40(6):80-88. (In Russ.) https://doi.org/10.15372/SSMJ20200608

Views: 251


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)