Preview

Сибирский научный медицинский журнал

Advanced search

Dopaminergic system and its relationship with the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-thyroid systems (review)

https://doi.org/10.15372/SSMJ20200604

Abstract

This article reviews literature data on the activity of the central and peripheral dopaminergic systems, as well as its relationship with the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-thyroid systems. Studies have shown that dopamine levels vary depending on the territory of residence, while the data on the age dynamics of the plasma dopamine level contradict each other, which does not allow an unambiguous conclusion about a decrease or increase in its level with age. Most studies focus on the functions of dopamine in the central nervous system. Symptoms of several brain diseases, including schizophrenia, Parkinson’s disease, attention deficit and hyperactivity disorders and depression, are alleviated by the pharmacological modulation of dopamine transmission. However, there is evidence of a functional role of peripheral dopamine. While dopamine of the central dopaminergic system inhibits the secretion of thyrotropin, dopamine synthesized by sympathoadrenal nerve cells, heparinocytes, and thyroid parafollicular cells on the periphery stimulates the formation and release of iodothyronines. The neuroprotective effects of sex steroids determine the prevalence of studies of their role in preservation and maintaining the activity of the dopaminergic system. The dopaminergic system also affects the levels of sex hormones, enhancing aromatase activity, inhibiting the synthesis or secretion of prolactin, regulating the levels of gonadotropins and steroidogenesis in Leydig cells. The peripheral and central dopamine systems are sensitive to environmental influences, which indicate the relationship between the peripheral and central links.

About the Author

I. N. Molodovskaya
N. Laverov Federal Center for Integrated Arctic Research of UrO RAS
Russian Federation

Irina N. Molodovskaya - candidate of biological sciences.

163000, Архангельск, наб. Северной Двины, 23



References

1. Shpakov A.O., Derkach K.V., Sukhov I.B. The brain dopamine signaling system in type 2 diabetes mellitus and metabolic syndrome. Tsitologiya = Cell and Tissue Biology. 2016; 58 (3): 167-177. [In Russian].

2. Gurevich E.V., Gainetdinov R.R., Gurevich V.V. G protein-coupled receptor kinases as regulators of dopamine receptor functions. Pharmacol. Res. 2016; 111: 1-16 doi: 10.1016/j.phrs.2016.05.010

3. Yin J., Chen K.M., Clark M.J., Hijazi M., Kumari P., Bai X., Sunahara R.K., Barth P., Rosenbaum D.M. Structure of a D2 dopamine receptor-G-protein complex in a lipid membrane. Nature. 2020; 584: 125-129. doi: 10.1038/s41586-020-2379-5

4. Dela Pena I., Gevorkiana R., Shi W.X. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms. Eur. J. Pharmacol. 2015; 764: 562-570. doi: 10.1016/j.ejphar.2015.07.044

5. O’Connell K.S., McGregor N.W., Lochner C., Emsley R., Warnich L. The genetic architecture of schizophrenia, bipolar disorder, obsessive-compulsive disorder and autism spectrum disorder. Mol. Cell Neurosci. 2018; 88: 300-307. doi: 10.1016/j.mcn.2018.02.010

6. Rubi B., Maechler P. Minireview: New roles for peripheral dopamine on metabolic control and tumor growth: let’s seek the balance. Endocrinol. 2010; 151 (12): 5570-5581. doi: 10.1210/en.2010-0745

7. Korkushko O.V., Asanov E.O., Pisaruk A.V., Belikova M.V. Sympathoadrenal system response to hypoxic stress in the elderly people. Problemy stareniya i dolgoletiya = Aging and Longevity Problems. 2007; 16 (1): 3-10. [In Russian].

8. Esler M.D., Thompson J.M., Kaye D.M., Turner A.G., Jennings G.L., Cox H.S., Lambert G.W., Seals D.R. Effects of aging on the responsiveness of the human cardiac sympathetic nerves to stressors. Circulation. 1995; 91 (2): 351-358. doi: 10.1161/01.cir.91.2.351

9. Hashizume K., Yamamoto A., Ogihara T. Free and total dopamine in human plasma: effect of posture, age and some pathophysiological conditions. Hypertens. Res. 1995; 18 (1): 205-207. doi: 10.1291/hy-pres.18.SupplementI_S205

10. Frol’kis V.V. Stress-age-syndrome. Fiziologiches-kiy zhurnal imeni Ivana Mikhaylovicha Sechenova Soy-uza Sovetskikh Sotsialisticheskikh Respublik = Journal of Physiology of USSR. 1991; 37 (3): 3-11. [In Russian].

11. Ng A.V., Callister R., Johnson D.G., Seals D.R. Sympathetic neural reactivity to stress does not increase with age in healthy humans. Am. J. Physiol. 1994; 267: 344-353. doi: 10.1152/ajpheart.1994.267.1.H344

12. Levin O.S., Artemyev D.V., Bril E.V., Kulua T.K. Parkinson’s disease: modern approaches to diagnosis and treatment. Prakticheskaya meditsina = Practical Medicine. 2017; 102 (1): 45-51. [In Russian].

13. Belousova I.I. Age-related features of hormonal and neurochemical regulation of the reproductive function of male rats with different aging rates: аbstract of thesis. ... cand.biol. sciences. Novosibirsk, 2012. [In Russian].

14. Ali D.C., Naveed M., Gordon A., Majeed F., Saeed M., Ogbuke M.I., Atif M., Zubair H.M., Chang-xing L. в-Adrenergic receptor, an essential target in cardiovascular diseases. Heart Fail. Rev. 2020; 25: 343-354. doi: 10.1007/s10741-019-09825-x

15. Okolito N.N. Adaptive capabilities of the body of the military personnel of the Central, Southern and North-Western Federal Districts in the conditions of the Stavropol garrison: abstract dis. ... cand. biol. sciences. Maykop, 2009. [In Russian].

16. Lutsenko M.T. Morphological and neurohumoral adaptation mechanisms of the respiratory system in individuals living in the north-east of Russia. 13th International Congress on Circumpolar Medicine: proc. congr., Novosibirsk, June 12-16, 2006. Novosibirsk, 2006. 169-170. [In Russian].

17. Taxier L.R., Gross K.S., Frick K.M. Oestradiol as a neuromodulator of learning and memory. Nat. Rev. Neurosci. 2020; 21: 535-550. doi: 10.1038/s41583-020-0362-7

18. Purves-Tyson T.D., Owens S.J., Double K.L., Desai R., Handelsman D.J., Weickert C.S. Testosterone induces molecular changes in dopamine signaling pathway molecules in the adolescent male rat nigrostriatal pathway. PLoS One. 2014; 9 (3): e91151. doi: 10.1371/journal.pone.0091151

19. Ravizza T., Galanopoulou A.S., Veliskova J., Moshe S.L. Sex differences in androgen and estrogen receptor expression in rat substantia nigra during development: an immunohistochemical study. Neuroscience. 2002; 115: 685-696. doi: 10.1016/s0306-4522(02)00491-8

20. Zhang T., Wang Y., Kang Y., Wang L., Zhao H., Ji X., Huang Y., Yan W., Cui R., Zhang G., Shi G. Testosterone enhances mitochondrial complex V function in the substantia nigra of aged male rats. Aging (Albany NY). 2020; 12 (11): 10398-10414. doi: 10.18632/ag-ing.103265

21. Gillies G.E., McArthur S. Estrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines. Pharmacol. Rev. 2010; 62 (2): 155-198. doi: 10.1124/pr.109.002071

22. Yoest K.E., Cummings J.A., Becker J.B. Estradiol, dopamine and motivation. Cent. Nerv. Syst. Agents Med. Chem. 2014; 14 (2): 83-89. doi: 10.2174/1871524914666141226103135

23. Levey G.S., Klein I. Catecholamine-thyroid hormone interactions and the cardiovascular manifestations of hyperthyroidism. Am. J. Med. 1990; 88 (6): 642-646. doi: 10.1016/0002-9343(90)90533-j

24. Lammers C.H., D’Souza U., Qin Z.H., Lee S.H., Yajima S., Mouradian M.M. Regulation of striatal dopamine receptors by estrogen. Synapse. 1999; 34 (3): 222-227. doi: 10.1002/(SICI)1098-2396(19991201)34:3<222::AID-SYN6>3.0.CO;2-J

25. Bosse R., Di Paolo T. The modulation of brain dopamine and CABAA receptors by estradiol: A clue for CNS changes occurring at menopause. Cell. Mol. Neurobiol. 1996; 16 (2): 199-212. doi: 10.1007/bf02088176 26. Cerri S., Mus L., Blandini F. Parkinson’s disease in women and men: What’s the difference? J. Parkinsons Dis. 2019; 9 (3): 501-515. doi: 10.3233/JPD-191683

26. Zhang G., Shi G., Tan H., Kang Y., Cui H. Intranasal administration of testosterone increased immobile-sniffing, exploratory behavior, motor behavior and grooming behavior in rats. Horm. Behav. 2011; 59 (4): 477-483. doi: 10.1016/j.yhbeh.2011.01.007

27. Avsar O. Is testosterone perspective available for neurodegenerative diseases? Neuropsychiatry. 2018; 8 (5): 1482-1489. doi: 10.4172/neuropsychiatry.1000481

28. Kenangil G., Orken D.N., Ur E., Forta H., Ce-lik M. The relation of testosterone levels with fatigue and apathy in Parkinson’s disease. Clin. Neurol. Neuro-surg. 2009; 111 (5): 412-414. doi: 10.1016/j.clineuro.2008.11.019

29. Okun M.S., Wu S.S., Jennings D., Marek K., Rodriguez R.L., Fernandez H.H. Testosterone level and the effect of levodopa and agonists in early Parkinson disease: results from the INSPECT cohort. J. Clin. Mov. Disord. 2014; 1: 8. doi: 10.1186/2054-7072-1-8

30. Krolick K.N., Zhu Q., Shi H. Effects of estrogens on central nervous system neurotransmission: implications for sex differences in mental disorders. Prog. Mol. Biol. Transl. Sci. 2018; 160: 105-171. doi: 10.1016/bs.pmbts.2018.07.008

31. Raghava N., Das B.C., Ray S.K. Neuroprotec-tive effects of estrogen in CNS injuries: insights from animal models. Neurosci. Neuroecon. 2017; 6: 15-29. doi: 10.2147/NAN.S105134

32. Chavez C., Hollaus M., Scarr E., Pavey G., Gogos A., van den Buuse M. The effect of estrogen on dopamine and serotonin receptor and transporter levels in the brain: an autoradiography study. Brain Res. 2010; 1321: 51-59. doi: 10.1016/j.brainres.2009.12.093

33. Thompson T.L., Certain M.E. Estrogen mediated inhibition of dopamine transport in the striatum. Eur. J. Pharmacol. 2005; 511 (2-3): 121-126. doi: 10.1016/j.ejphar.2005.02.005

34. Watson C.S., Jeng Y.J., Guptarak J. Endocrine disruption via estrogen receptors that participate in nongenomic signaling pathways. J. Steroid Biochem. Mol. Biol. 2011; 127 (1-2): 44-50. doi: 10.1016/j.js-bmb.2011.01.015

35. Karakaya S., Kipp M., Beyer C. Oestrogen regulates the expression and function of dopamine transporters in astrocytes of the nigrostriatal system. J. Neuroendocrinol. 2007; 19: 682-690. doi: 10.1111/j.1365-2826.2007.01575.x

36. Labrie F., Ferland L., Beaulieu M. Sex steroids interact with dopamine at the hypothalamic and pituitary levels to modulate prolactin secretion. J. Steroid Biochem. 1980; 12: 323-330. doi: 10.1016/0022-4731(80)90287-3

37. Dreher J.C., Meyer-Lindenberg A., Kohn P., Berman K.F. Age-related changes in midbrain dopaminergic regulation of the human reward system. Proc. Natl. Acad. Sci. USA. 2008; 105 (39): 15106-15111. doi: 10.1016/j.euroneuro.2008.08.003

38. Matt S.M., Gaskill P.J. Where is dopamine and how do immune cells see it?: dopamine-mediated immune cell function in health and disease. J. Neuroimmune Pharmacol. 2020; 15: 114-164. doi: 10.1007/s11481-019-09851-4

39. Hernandez-Hernandez O.T., Martinez-Mota L., Herrera-Perez J.J. Role of estradiol in the expression of genes involved in serotonin neurotransmission: implications for female depression. Curr. Neuropharmacol. 2019; 17 (5): 459-471. doi: 10.2174/1570159X16666180628165107

40. de Souza Silva M.A., Mattern C., Topic B., Buddenberg T.E., Huston J.P. Dopaminergic and serotonergic activity in neostriatum and nucleus accumbens enhanced by intranasal administration of testosterone. Eur. Neuropsychopharmacol. 2009; 19 (1): 53-63. doi: 10.1016/j.euroneuro.2008.08.003

41. Engel J., Ahlenius S., Almgren O., Carlsson A., Larsson K., Sodersten P. Effects of gonadectomy and hormone replacement on brain monoamine synthesis in male rats. Pharmacol. Biochem. Behav. 1979; 10 (1): 149-154. doi: 10.1016/0091-3057(79)90181-3

42. Tomas-Camardiel M., Sanchez-Hidalgo M.C., Sanchez del Pino M.J., Navarro A., Machado A., Cano J. Comparative study of the neuroprotective effect of dehydroepiandrosterone and 17beta-estradiol against 1-methyl-4-phenylpyridium toxicity on rat striatum. Neuroscience. 2002; 109 (3): 569-584. doi: 10.1016/s0306-4522(01)00502-4

43. Goudsmit E., Feenstra M.G., Swaab D.F. Central monoamine metabolism in the Brown-Norway rat in relation to aging and testosterone. Brain Res. Bull. 1990; 25 (5): 755-763. doi: 10.1016/0361-9230(90)90054-4

44. Myers R.E., Anderson L.I., Dluzen D.E. Estrogen, but not testosterone, attenuates methamphetamine-evoked dopamine output from superfused striatal tissue of female and male mice. Neuropharmacology. 2003; 44 (5): 624-632. doi: 10.1016/s0028-3908(03)00043-1

45. Mizrahi R., Suridjan I., Kenk M., George T.P., Wilson A., Houle S., Rusjan P. Dopamine response to psychosocial stress in chronic cannabis users: a PET study with [11C]-(+)-PHNO. Neuropsychopharmacology. 2013; 38 (4): 673-682. doi: 10.1038/npp.2012.232

46. Andersen S.L., Thompson A.P., Krenzel E., Teicher M.H. Pubertal changes in gonadal hormones do not underline adolescent dopamine receptor overproduction. Psychoneuroendocrinology. 2002; 27 (6): 683-691. doi: 10.1016/s0306-4530(01)00069-5

47. Bitar M.S., Ota M., Linnoila M., Shapiro B.H. Modification of gonadectomy-induced increases in brain monoamine metabolism by steroid hormones in male and female rats. Psychoneuroendocrinology. 2001; 16 (6): 547-557. doi: 10.1016/0306-4530(91)90038-u

48. Cui R., Kang Y., Wang L., Li S., Ji X., Yan W., Zhang G., Cui H., Shi G. Testosterone propionate exacerbates the deficits of nigrostriatal dopaminergic system and downregulates nrf2 expression in reserpine-treated aged male rats. Front. Aging Neurosci. 2017; 9: 172. doi: 10.3389/fnagi.2017.00172

49. Hull E.M., Dominguez J.M. Sexual behavior in male rodents. Horm. Behav. 2007; 52 (1): 45-55. doi: 10.1016/j.yhbeh.2007.03.030

50. Dirami G., Cooke B.A. Effect of a dopamine agonist on luteinizing hormone receptors, cyclic AMP production and steroidogenesis in rat Leydig cells. Toxicol. Appl. Pharmacol. 1998; 150 (2): 393-401. doi: 10.1006/taap.1998.8429

51. Ely D., Toot J., Salisbury R., Ramirez R. Androgens alter brain catecholamine content and blood pressure in the testicular feminized male rat. Clin. Exp. Hypertens. 2011; 33 (2): 124-132. doi: 10.3109/10641963.2010.531840

52. Rehavi M., Attali G., Gil-Ad I., Weizman A. Supession of serum gonadal steroids in rats by chronic treatment with dopamine and serotonin reuptake inhibitors. Eur. Neuropsychoparmacol. 2000; 10 (3): 145150. doi: 10.1016/S0924-977X(00)00066-3

53. Xing L., Esau C., Trudeau V.L. Direct regulation of aromatase b expression by 17e—estradiol and dopamine D1 receptor agonist in adult radial glial cells. Front. Neurosci. 2015; 9: 504. doi: 10.3389/fnins.2015.00504

54. Xing L., McDonald H., da Fonte D.F., Gutierrez-Villagomez J.M., Trudeau V.L. Dopamine D1 receptor activation regulates the expression of the estrogen synthesis gene aromatase B in radial glial cells. Front. Neurosci. 2015; 9: 310. doi: 10.3389/fnins.2015.00310

55. Barrado M.J.G., Blanco E.J., Hernandez M.C., Osma M.C.I., Carretero M., Herrero J.J., Burks D.J., Carretero J. Local transformations of androgens into estradiol by aromatase p450 is involved in the regulation of prolactin and the proliferation of pituitary prolactin-positive cells. PLoS One. 2014; 9 (6): e101403. doi: 10.1371/journal.pone.0101403

56. Bhatnagar A.S. The discovery and mechanism of action of letrozole. Breast Cancer Res. Treat. 2007; 105 (1): 7-17. doi: 10.1007/s10549-007-9696-3

57. Balthazart J., Ball G.F. New insights into the regulation and function of brain estrogen synthase (aromatase). Trends Neurosci. 1998; 21 (6): 243-249. doi: 10.1016/s0166-2236(97)01221-6

58. Aversa A., Isidori A.M., Greco E.A., Giannet-ta E., Gianfrilli D., Spera E., Fabbri A. Hormonal supplementation and erectile dysfunction. Eur. Urol. 2004; 45 (5): 535-538. doi: 10.1016/j.eururo.2004.01.005

59. de Bournonville M.P., Vandries L.M., Ball G.F., Balthazart J., Cornil C.A. Site-specific effects of aromatase inhibition on the activation of male sexual behavior in male Japanese quail (Coturnix japonica). Horm. Behav. 2019; 108: 42-49. doi: 10.1016/j.yhbeh.2018.12.015

60. Balthazart J., Baillien M., Ball G.F. Interactions between kinases and phosphatases in the rapid control of brain aromatase. J. Neuroendocrinol. 2005; 17 (9): 553-559. doi: 10.1111/j.1365-2826.2005.01344.x

61. Ayano G. Dopamine: receptors, functions, synthesis, pathways, locations and mental disorders: review of literatures. J. Ment. Disord. Treat. 2016; 2: 120. doi:10.4172/2471-271X.1000120

62. Gonzalez-Iglesias A.E., Murano T., Li S., Tomic M., Stojilkovic S.S. Dopamine inhibits basal prolactin release in pituitary lactotrophs through pertussis toxin-sensitive and insensitive signaling pathways. Endocrinology. 2008; 149 (4): 1470-1479. doi: 10.1210/en.2007-0980

63. Gragnoli C., Reeves G.M., Reazer J., Postol-ache T.T. Dopamine-prolactin pathway potentially contributes to the schizophrenia and type 2 diabetes comorbidity. Transl. Psychiatry. 2016; 6 (4): e785. doi: 10.1038/tp.2016.50

64. Krasnow J.S., Hickey G.J., Richards J.S. Regulation of aromatase mRNA and estradiol biosynthesis in rat ovarian granulosa and luteal cells by prolactin. Mol. Endocrinol. 1990; 4 (1): 13-21. doi: 10.1210/mend-4-1-13

65. Bernard V., Young J., Chanson P., Binart N. New insights in prolactin: pathological implications. Nat. Rev. Endocrinol. 2015; 11: 265-275. doi: 10.1038/ nrendo.2015.36

66. Rattanakul C., Lenbury Y. A mathematical model of prolactin secretion: Effects of dopamine and thyrotropin-releasing hormone. Math. Comp. Model. 2009; 49 (9-10): 1883-1892. doi: 10.1016/j.mcm.2008.11.016

67. Bailey A.R., Burchett K.R. Effect of low-dose dopamine on serum concentration of prolactin in critically ill patients. Br. J. Anaesth. 1997; 78 (1): 97-99. doi: 10.1093/bja/78.1.97

68. Arbogast L.A., Voogt J.L. Prolactin receptors are colocalized in dopaminergic neurons in fetal hypothalamic cell cultures: effect of prolactin on tyrosine hydroxylase activity. Endocrinology. 1997; 138 (7): 3016-3023. doi: 10.1210/endo.138.7.5227

69. Huo S., Zhong X., Wu X., Li Y. Effects of norepinephrine and acetylcholine on the development of cultured Leydig Cells in mice. J. Biomed. Biotechnol. 2012; 2012: 503093. doi: 10.1155/2012/503093

70. Mayerhofer A., Bartke A., Began T. Catecholamines stimulate testicular steroidogenesis in vitro in the Siberian hamster, Phodopussungorus. Biol. Reprod. 1993; 48 (4): 883-888. doi: 10.1095/biolreprod48.4.883

71. Putnam S.K., Sato S., Hull E.M. Effects of testosterone metabolites on copulation and medial preoptic dopamine release in castrated male rats. Horm. Behav. 2003; 44 (5): 419-426. doi: 10.1016/j.yhbeh. 2003.06.006

72. Marcano de Cotte D., de Menezes C.E., Bennett G.W., Edwardson J.A. Dopamine stimulates the degradation of gonadotropin releasing hormone byrat synaptosomes. Nature. 1980; 283: 487-489. doi: 10.1038/283487a0

73. Henderson H.L., Townsend J., Tortonese D.J. Direct effects of prolactin and dopamine on the gonadotroph response to GnRH. J. Endocrinol. 2008; 197: 343-350. doi: 10.1677/JOE-07-0536

74. Hodson D.J., Henderson H.L., Townsend J., Tortonese D.J. Photoperiodic modulation of the suppressive actions of prolactin and dopamine on the pituitary gonadotropin responses to gonadotropin-releasing hormone in sheep. Biol. Reprod. 2012; 86 (4): 122. doi: 10.1095/biolreprod.111.096909

75. Liu X., Herbison A.E. Dopamine regulation of gonadotropin-releasing hormone neuron excitability in male and female mice. Endocrinology. 2013; 154 (1): 340-350. doi: 10.1210/en.2012-1602

76. Siris S.G., Siris E.S., van Kammen D.P., Do-cherty J.P., Alexander P.E., Bunney W.E. Effects of dopamine blockade on gonadotropins and testosterone in men. Am. J. Psychiatry.1980; 137 (2): 211-214. doi: 10.1176/ajp.137.2.211

77. Mohammadi S., Dolatshahi M., Rahmani F. Shedding light on thyroid hormone disorders and Parkinson disease pathology: mechanisms and risk factors. J. Endocrinol. Invest. 2020; 127 (2). doi: 10.1007/s40618-020-01314-5

78. CoiroV., Volpi R., Cataldo S., Capretti L., Caffarri G., Pilla S., Chiodera P. Dopaminergic and cholinergic involvement in the inhibitory effect of dexamethasone on the TSH response to TRH. J. Investig. Med. 2000; 48 (2): 133-136.

79. Pereira J.C., Pradella-Hallinan M., de Lins Pessoa H. Imbalance between thyroid hormones and the dopaminergic system might be central to the pathophysiology of restless legs syndrome: a hypothesis. Clinics (Sao Paulo). 2010; 65 (5): 548-554. doi: 10.1590/S1807-59322010000500013

80. Ben-Shlomo A., Liu N.A., Melmed S. Somatostatin and dopamine receptor regulation of pituitary somatotroph adenomas. Pituitary. 2017; 20 (1): 93-99. doi: 10.1007/s11102-016-0778-2

81. Connell J.M., Ball S.G., Balmforth A.J., Beast-all G.H., Davies D.L. Effect of low-dose dopamine infusion on basal and stimulated TSH and prolactin concentrations in man. Clin. Endocrinol. (Oxf.). 1985; 23 (2): 185-192. doi: 10.1111/j.1365-2265.1985.tb00214.x

82. Santos N.C., Costa P., Ruano D., Macedo A., Soares M.J., Valente J., Pereira A.T., Azevedo M.H., Palha J.A. Revisiting thyroid hormones in schizophrenia. J. Thyroid Res. 2012. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3321576. doi: 10.1155/2012/569147

83. Haugen B.R. Drugs that suppress TSH or cause central hypothyroidism. Best Pract. Res. Clin. Endocrinol. Metab. 2009; 23 (6): 793-800. doi: 10.1016/j.beem.2009.08.003

84. Sato T., Imura E., Murata A., Igarashi N. Thyroid hormone-catecholamine interrelationship during cold acclimation in rats. Compensatory role of catecholamine for altered thyroid states. Acta Endocrinol. (Copenh.). 1986; 113 (4): 536-542. doi: 10.1530/acta.0.1130536

85. Grasso S., Buffa R., Martino E., Bartalena L., Curzio M., Salomone E. Gastrin (G) cells are the cellular site of the gastric thyrotropin-releasing hormone in human fetuses and newborns A chromatographic, radioimmunological, and immunocytochemical study. J. Clin. Endocrinol. Metab. 1992; 74: 1421-1426. doi: 10.1210/jcem.74.6.1592890

86. Crocker A.D., Overstreet D.H., Crocker J.M. Hypothyroidism leads to increased dopamine receptor sensitivity and concentration. Pharmacol. Biochem. Behav. 1986; 24 (6): 1593-1597. doi: 10.1016/0091-3057(86)90491-0

87. Diarra A., Lefauconnier J.M., Valens M., Georges P., Gripois D. Tyrosine content, influx and accumulation rate, and catecholamine biosynthesis measured in vivo, in the central nervous system and in peripheral

88. organs of the young rat. Influence of neonatal hypo- and hyperthyroidism. Arch. Int. Physiol. Biochim. 1989; 97 (5): 317-332. doi: 10.3109/13813458909104543

89. Coert A., Nievelstein H., Kloosterboer H.J., Loonen P., van der Vies J. Effects of hyperprolactinemia on the accessory sexual organs of the male rat. Prostate. 1985; 6 (3): 269-276. doi: 10.1002/pros.29900 60306

90. Brent G.A. Mechanisms of thyroid hormone action. J. Clin. Invest. 2012; 122 (9): 3035-3043. doi: 10.1172/JCI60047

91. Melander A. Aminergic regulation of thyroid activity: Importance of the sympathetic innervation and of the mass cells of the thyroid gland. Acta Med. Scand. 1977; 201: 257-262. doi: 10.1111/j.0954-6820.1977.tb15696.x

92. Melander A., Ranklev E., Sundler F., West-gren U. Beta2-adrenergic stimulation of thyroid hormone secretion. Endocrinology. 1975; 97: 332-336. doi: 10.1210/endo-97-2-332


Review

For citations:


Molodovskaya I.N. Dopaminergic system and its relationship with the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-thyroid systems (review). Сибирский научный медицинский журнал. 2020;40(6):34-43. (In Russ.) https://doi.org/10.15372/SSMJ20200604

Views: 1100


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)