Preview

Сибирский научный медицинский журнал

Advanced search

Development of invasive EEG in epilepsy surgery (review)

https://doi.org/10.15372/SSMJ20200603

Abstract

There are different diagnostic methods that used for localization of the seizure onset zone in focal refractory epilepsy cases. Invasive video-EEG recording is the «gold standard» in determining the epileptogenic zone among other diagnostic methods. Invasive EEG already has a long history of using. This article provides historical review and analysis of the techniques, their advantages and disadvantages, current issues.

About the Authors

V. M. Dzhafarov
Novosibirsk Center of Neurosurgery of Minzdrav of Russia
Russian Federation

Vidzhai M. Dzhafarov

630087, Novosibirsk, Nemirovicha-Danchenko str., 132/1



J. A. Rzaev
Novosibirsk Center of Neurosurgery of Minzdrav of Russia
Russian Federation

Jamil A. Rzaev -doctor of medical science.

630087, Novosibirsk, Nemirovicha-Danchenko str., 132/1



References

1. Krylov V.V., Guekht A.B., Trifonov I.S., Lebedeva A.V., Kaimovsky I.L., Sinkin M.V., Grigorieva E.V., Grishkina M.N., Shyshkina L.V., Kochetkova O.O. Outcomes of surgical treatment of patients with phar-macoresistant epilepsy. Zhurnal nevrologii i psikhi-atrii imeni Sergeya Sergeevicha Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry. 2016; 116 (9): 13-18. [In Russian]. doi:10.17116/jnevro20161169213-18

2. Banerjee P., Filippi D., Hauser W.A. The descriptive epidemiology of epilepsy - A review. Epilepsy Res. 2009; 85 (1): 31-45. doi:10.1016/j.eplep-syres.2009.03.003

3. Jin P., Wu D., Li X., Ren L., Wang Y. Towards precision medicine in epilepsy surgery. Ann. Transl. Med. 2016; 4 (2): 24. doi: 10.3978/j.issn.2305-5839.2015.12.65

4. Jayakar P., Gotman J., Harvey A., Palmini A., Tassi L., Schomer D., Dubeau F., Bartolomei F., Yu A., Krsek P, Velis D., Kahane P. Diagnostic utility of invasive EEG for epilepsy surgery: Indications, modalities, and techniques. Epilepsia. 2016; 57 (11): 1735-1747. doi: 10.1111/epi.13515

5. Taussig D., Montavont A., Isnard J. Invasive EEG explorations. Neurophysiol. Clin. 2015; 45 (1): 113-119. doi:10.1016/j.neucli.2014.11.006

6. Fisch B. Spehlmann’s EEG Primer. Amsterdam: Elsevier, 1997. 642 p.

7. Girvin J. History of epilepsy surgery. In: Operative Techniques in Epilepsy. Switzerland: Springer International Publishing, 2014. 307 p.

8. Olivier A., Boling W., Tanriverdi T. History of epilepsy surgery. In: Techniques in Epilepsy Surgery. United Kingdom: Cambridge University Press, 2012. 298 p.

9. Tyagun N.S., Mukhin E.Yu. Development of epilepsy surgery in the 2-nd half of XIX through mid-XX century. Russkiy zhurnal detskoy nevrologii = Russian Journal of Child Neurology. 2009; 4 (3): 41-46. [In Russian].

10. Reif P., Strzelczyk A., Rosenow F. The history of invasive EEG evaluation in epilepsy patients. Seizure. 2016; 41: 191-195. doi:10.1016/j.seizure.2016.04.006

11. Berger H. About the human electroencephalogram. Archiv fur Psychiatrie und Nervenkrankheiten = Archives for Psychiatry and Nervous Diseases. 1929; 87: 527-570. [In German]. doi: 10.1055/s-0028-1130334

12. Almeida A., Martinez V., Feindel W. The first case of invasive EEG monitoring for the surgical treatment of epilepsy: Historical significance and context. Epilepsia. 2005; 46 (7): 1082-1085. doi:10.1111/j.1528-1167.2005.66404.x

13. Jasper H., Marsan C., Stoll J. Experimental studies of the subcortical projections of local cortical epileptiform discharge. Trans. Am. Neurol. Assoc. 1951; 56: 3-9.

14. Lennox M., Brody B. Paroxysmal slow waves in the electro-encephalograms of patients with epilepsy and with subcortical lesions. J. Nerv. Ment. Dis. 1946; 104 (3): 237-248. doi:10.1097/00005053-194609000-00001

15. Hayne R., Meyers R., Knott J. Characteristics of electrical activity of human corpus striatum and neighboring structures. J. Neurophysiol. 1949; 12 (3): 185-196. doi:10.1152/jn.1949.12.3.185

16. Talairach J., Bancaud J., Bonis A., Szikla G., Tournoux P. Functional stereotaxic exploration of epilepsy. Confin. Neurol. 1962; 22 (3-5): 328-331. doi:10.1159/000104378

17. Talairach J., Bancaud J. Lesion, «irritative» zone and epileptogenic focus. Confin. Neurol. 1966; 27 (1): 91-94. doi:10.1159/000103937

18. Northfield D. Experiment and neurological surgery. Br. Med. J. 1968; 4 (5629): 471-477. doi:10.1136/bmj.4.5629.471

19. Matias C., Sharan A., Wu C. Responsive neurostimulation for the treatment of epilepsy. Neurosurg. Clin. N. Am. 2019; 30 (2): 231-242. doi:10.1016/j.nec.2018.12.006

20. Sefcik R., Opie N., John S., Kellner C., Mocco J., Oxley T. The evolution of endovascular electroencephalography: historical perspective and future applications. Neurosurg. Focus. 2016; 40 (5): E7. doi:10.3171/2016.3.focus15635

21. Katz J., Abel T. Stereoelectroencephalography versus subdural electrodes for localization of the epileptogenic zone: what is the evidence? Neurotherapeutics. 2019; 16 (1): 59-66. doi: 10.1007/s13311-018-00703-2

22. Zuev A.A., Golovteev A.L., Pedyash N.V., Ka-lybaeva N.A., Bronov O.Yu. Possibilities for surgical treatment of the pharmacoresistant form of epilepsy using robot-assisted implantation of deep electrodes for invasive stereoelectroencephalography. Neyrokhirurgi-ya = Neurosurgery. 2020; 22 (1): 12-20. [In Russian]. doi:10.17650/1683-3295-2020-22-1-12-20

23. Podkorytova I., Hoes K., Lega B. Stereo-encephalography versus subdural electrodes for seizure localization. Neurosurg. Clin. N. Am. 2016; 27 (1): 97-109. doi:10.1016/j.nec.2015.08.008

24. Minotti L., Montavont A., Scholly J., Ty-vaert L., Taussig D. Indications and limits of stereoelectroencephalography (SEEG). Neurophysiol. Clin. 2018; 48 (1): 15-24. doi:10.1016/j.neucli.2017.11.006

25. Cossu M., Cardinale F., Castana L., Citterio A., Francione S., Tassi L., Benabid A., Russo G. Stereoelectroencephalography in the presurgical evaluation of focal epilepsy: a retrospective analysis of 215 procedures. Neurosurgery. 2005; 57 (4): 706-718. doi:10.1227/01.neu.0000176656.33523.1e

26. Serletis D., Bulacio J., Bingaman W., Najm I., Gonzalez-Martmez J. The stereotactic approach for mapping epileptic networks: a prospective study of 200 patients. J. Neurosurg. 2014; 121 (5): 1239-1246. doi:10.3171/2014.7.jns132306

27. Yang P., Zhang H., Pei J., Tian J., Lin Q., Mei Z., Zhong Z., Jia Y., Chen Z., Zheng Z. Intracranial electroencephalography with subdural and/or depth electrodes in children with epilepsy: Techniques, complications, and outcomes. Epilepsy Res. 2014; 108 (9): 1662-1670. doi:10.1016/j.eplepsyres.2014.08.011

28. Vale F., Pollock G., Dionisio J., Benbadis S., Tatum W. Outcome and complications of chronically implanted subdural electrodes for the treatment of medically resistant epilepsy. Clin. Neurol. Neurosurg. 2013; 115 (7): 985-990. doi:10.1016/j.clineuro.2012.10.007

29. Mullin J., Sexton D., Al-Omar S., Bingaman W., Gonzalez-Martinez J. Outcomes of subdural grid electrode monitoring in the stereoelectroencephalography era. World Neurosurg. 2016; 89: 255-258. doi:10.1016/j.wneu.2016.02.034

30. Sheth S., Aronson J., Shafi M., Phillips H., Velez-Ruiz N., Walcott B., Kwon C., Mian M., Dykstra A., Cole A., Eskandar E. Utility of foramen ovale electrodes in mesial temporal lobe epilepsy. Epilepsia. 2014; 55 (5): 713-724. doi:10.1111/epi.12571

31. Nilsson D., Fohlen M., Jalin C., Dorfmuller G., Bulteau C., Delalande O. Foramen ovale electrodes in the preoperative evaluation of temporal lobe epilepsy in children. Epilepsia. 2009; 50 (9): 2085-2096. doi:10.1111/j.1528-1167.2009.02135.x

32. Velasco T., Sakamoto A., Alexandre V., Walz R., Dalmagro C., Bianchin M., Araujo D., Santos A., Leite J., Assirati J., Carlotti C. Foramen ovale electrodes can identify a focal seizure onset when surface eeg fails in mesial temporal lobe epilepsy. Epilepsia. 2006; 47 (8): 1300-1307. doi:10.1111/j.1528-1167.2006.00547.x

33. Massot-Tarrus A., Steven D., McLachlan R., Mirsattari S., Diosy D., Parrent A., Blume W., Girvin J., Burneo J. Outcome of temporal lobe epilepsy surgery evaluated with bitemporal intracranial electrode recordings. Epilepsy Res. 2016; 127: 324-330. doi:10.1016/j.eplepsyres.2016.08.008

34. Valentin A., Hernando-Quintana N., Moles-Herbera J. Jimenez-Jimenez D., Mourente S., Malik I., Selway R., Alarcon G. Depth versus subdural temporal electrodes revisited: Impact on surgical outcome after resective surgery for epilepsy. Clin. Neurophysiol. 2017; 128 (3): 418-423. doi:10.1016/j.clinph.2016.12.018

35. Joswig H., Lau J., Abdallat M., Parrent A., MacDougall K., McLachlan R., Burneo J., Steven D. Stereoelectroencephalography versus subdural strip electrode implantations: feasibility, complications, and outcomes in 500 intracranial monitoring cases for drugresistant epilepsy. Neurosurgery. 2020; 87 (1): E23-E30. doi:10.1093/neuros/nyaa112

36. Yan H., Katz J., Anderson M., Mansouri A., Remick M., Ibrahim G., Abel T. Method of invasive monitoring in epilepsy surgery and seizure freedom and morbidity: A systematic review. Epilepsia. 2019; 60 (9): 1960-1972. doi:10.1111/epi.16315

37. Toth M., Papp K., Gede N., Farkas K., Kovacs S., Isnard J., Hagiwara K., Gyimesi C., Kuperzko D., Doczi T., Janszky J. Surgical outcomes related to invasive EEG monitoring with subdural grids or depth electrodes in adults: A systematic review and meta-analysis. Seizure. 2019; 70: 12-19. doi:10.1016/j.seizure.2019.06.022

38. Park C., Hong S. High frequency oscillations in epilepsy: detection methods and considerations in clinical application. J. Epilepsy Res. 2019; 9 (1): 1-13. doi:10.14581/jer.19001

39. Jacobs J., Wu J., Perucca P., Zelmann R., Mader M., Dubeau F., Mathern G., Schulze-Bonhage A., Gotman J. Removing high-frequency oscillations. Neurology. 2018; 91 (11): e1040-e1052. doi:10.1212/wnl.0000000000006158


Review

For citations:


Dzhafarov V.M., Rzaev J.A. Development of invasive EEG in epilepsy surgery (review). Сибирский научный медицинский журнал. 2020;40(6):23-33. (In Russ.) https://doi.org/10.15372/SSMJ20200603

Views: 376


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)