Preview

Сибирский научный медицинский журнал

Расширенный поиск

Генетика синтропии «атопический марш»

https://doi.org/10.15372/SSMJ20200501

Полный текст:

Аннотация

Исследования феномена сочетания одновременно нескольких болезней у отдельного индивидуума, актуализированные во второй половине XIX в., спустя 150 лет активно анализируются с использованием генетических подходов. В статье представлен обзор результатов таких исследований в отношении аллергических заболеваний, в частности особого их варианта, так называемого «атопического марша», последовательного развития экземы, аллергического ринита и астмы (синтропия «атопический марш»). Обобщены результаты генетических и эпидемиологических исследований, проведен анализ работ поиска полногеномных ассоциаций, рассмотрена роль мутаций в гене филаггрина (FLG) в развитии данной синтропии.

Об авторах

Е. Ю. Брагина
НИИ медицинской генетики Томского национального исследовательского медицинского центра РАН
Россия

Елена Юрьевна Брагина, к.б.н.

634050, г. Томск, наб. реки Ушайки, 10



М. Б. Фрейдин
НИИ медицинской генетики Томского национального исследовательского медицинского центра РАН
Россия

Максим Борисович Фрейдин, д.б.н.

634050, г. Томск, наб. реки Ушайки, 10



В. П. Пузырёв
НИИ медицинской генетики Томского национального исследовательского медицинского центра РАН; Сибирский государственный медицинский университет Минздрава России
Россия

Валерий Павлович Пузырёв, д.м.н., проф., академик РАН

634050, г. Томск, наб. реки Ушайки, 10

634050, г. Томск, Московский тракт, 2



Список литературы

1. Feinstein A.R. Pre-therapeutic classification of co-morbidity in chronic disease. J. Chron. Dis. 1970; 23 (7): 455–468. doi: 10.1016/0021-9681(70)90054-8

2. Pfaundler M., Seht L.V. Über Syntropie von Krankheitszuständen. Z. Kinder-Heilk. 1921; 30: 100– 120. doi.org/10.1007/BF02222706

3. Пузырёв В.П., Фрейдин М.Б. Генетический взгляд на феномен сочетанных заболеваний человека. Acta Naturae. 2009; 1 (3): 57–63. Puzyrev V.P., Freidin M.B. Genetic view the phenomenon of combined diseases in man. Acta Naturae. 2009; 1 (3): 52–57.

4. Вяткин В.П. Об использовании термина «синтропия» в научных исследованиях. РЖ. Науч. обозрение. 2016; (3): 81–84. Vyatkin V.P. On the use of the term «syntropy» in scientific research. Referativnyy zhurnal «Nauchnoye obozreniye» = Abstract Journal «Scientific Review». 2016; (3): 81–84. [In Russian].

5. Agache I., Cojanu C., LaculiceanuA., Rogozea L. Critical points on the use of biologicals in allergic diseases and asthma. Allergy Asthma Immunol. Res. 2020; 12 (1): 24–41. doi: 10.4168/aair.2020.12.1.24

6. Pascal M., Perez-Gordo M., Caballero T., Escribese M.M., Lopez Longo M.N., Luengo O., Manso L., Matheu V., Seoane E., Zamorano M., Labrador M., Mayorga C. Microbiome and allergic diseases. Front. Immunol. 2018; 9: 1584. doi: 10.3389/fimmu.2018.01584

7. Ortiz R.A., Barnes K.C. Genetics of allergic diseases. Immunol. Allergy Clin. North Am. 2015; 35 (1): 19–44. doi: 10.1016/j.iac.2014.09.014

8. Spergel J.M., Paller A.S. Atopic dermatitis and the atopic march. J. Allergy Clin. Immunol. 2003; 112 (6): 118–127. doi: 10.1016/j.jaci.2003.09.033

9. Dharmage S.C., Lowe A.J., Matheson M.C., Burgess J.A., Allen K.J., Abramson M.J. Atopic dermatitis and the atopic march revisited. Allergy. 2014; 69 (1): 17–27. doi: 10.1111/all.12268

10. Almqvist C., Li Q., Britton W.J., Kemp A.S. Xuan W., Tovey E.R., Marks G.B. Early predictors for developing allergic disease and asthma: examining separate steps in the ‘allergic march’. Clin. Exp. Allergy. 2007; 37 (9): 1296–1302. doi: 10.1111/j.1365-2222.2007.02796.x

11. Punekar Y.S., Sheikh A. Establishing the sequential progression of multiple allergic diagnoses in a UK birth cohort using the General Practice Research Database. Clin. Exp. Allergy. 2009; 39 (12): 1889–1895. doi: 10.1111/j.1365-2222.2009.03366.x

12. Черняк Б.А., Ворожаева И.И. Коморбидные заболевания при аллергическом рините. Астма и аллергия. 2017; (1): 3–7. Chernyak B.A., Vorozhaeva I.I. Comorbid diseases in allergic rhinitis. Astma i allergiya = Asthma and Allergy. 2017; (1): 3–7. [In Russian].

13. Иванова Н.А. Коморбидность аллергического ринита и бронхиальной астмы у детей. Мед. совет. 2014; 6: 54–58. Ivanova N.A. Comorbidity of allergic rhinitis and bronchial asthma in children. Meditsinskiy sovet = Medical Council. 2014; 6: 54–58. [In Russian].

14. Фрейдин М.Б., Пузырёв В.П. Синтропные гены аллергических болезней. Генетика. 2010; 46 (2): 255–261. doi: 10.1134/S1022795410020134 Freidin M.B., Puzyrev V.P. Syntropic genes of allergic diseases. Russ. J. Genet. 2010; 46 (2): 224–229. doi: 10.1134/S1022795410020134

15. Davidson W.F., Leung D.Y.M., Beck L.A., Berin C.M., Boguniewicz M., Busse W.W., Chatila T.A., Geha R.S., Gern J.E., Guttman-Yassky E., Irvine A.D., Kim B.S., Kong H.H., Lack G., Nadeau K.C., Schwaninger J., Simpson A., Simpson E.L., Spergel J.M., Togias A., Wahn U., Wood R.A., Woodfolk J.A., Ziegler S.F., Plaut M. Report from the National Institute of Allergy and Infectious Diseases workshop on «Atopic dermatitis and the atopic march: Mechanisms and interventions». J. Allergy Clin. Immunol. 2019; 143 (3): 894–913. doi: 10.1016/j.jaci.2019.01.003

16. Elmose C., Thomsen S.F. Twin studies of atopic dermatitis: Interpretations and applications in the filaggrin era. J. Allergy (Cairo). 2015: 902359. doi: 10.1155/2015/902359

17. Lichtenstein P., Svartengren M. Genes, environments, and sex: factors of importance in atopic diseases in 7-9-year-old Swedish twins. Allergy. 1997; 52 (11): 1079–1086. doi: 10.1111/j.1398-9995.1997.tb00179.x

18. Thomsen S.F., Ulrik C.S., Kyvik K.O., Skadhauge L.R., Steffensen I., Backer V. Findings on the atopic triad from a Danish twin registry. Int. J. Tuberc. Lung Dis. 2006; 10 (11): 1268–1272.

19. van Beijsterveldt C.E., Boomsma D.I. Genetics of parentally reported asthma, eczema and rhinitis in 5-yr-old twins. Eur. Respir. J. 2007; 29 (3): 516–521. doi: 10.1183/09031936.00065706

20. Heinzmann A., Deichmann K.A. Genes for atopy and asthma. Curr. Opin. Allergy Clin. Immunol. 2001; 1 (5): 387–392. doi: 10.1097/01.all.0000011050.36626.ec

21. Фрейдин М.Б., Огородова Л.М., Пузырев В.П. Патогенетика аллергических болезней. Новосибирск: Изд-во СО РАН, 2015. 149 с. Freidin M.B., Ogorodova L.M., Puzyrev V.P. Pathogenetics of allergic diseases. Novosibirsk, 2015. 149 p.

22. Buniello A., MacArthur J.A.L., Cerezo M., Harris L.W., Hayhurst J., Malangone C., McMahon A., Morales J., Mountjoy E., Sollis E., Suveges D., Vrousgou O., Whetzel P.L., Amode R., Guillen J.A., Riat H.S., Trevanion S.J., Hall P., Junkins H., Flicek P., Burdett T., Hindorff L.A., Cunningham F., Parkinson H. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics. Nucleic Acids Res. 2019; 47 (D1): D1005-D1012. doi: 10.1093/nar/gky1120

23. Moffatt M.F., Gut I.G., Demenais F., Strachan D.P., Bouzigon E., Heath S., von Mutius E., Farrall M., Lathrop M., Cookson W., & GABRIEL Consortium. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 2010; 363 (13): 1211–1221. doi: 10.1056/NEJMoa0906312

24. Marenholz I., Bauerfeind A., Esparza-Gordillo J., Kerscher T., Granell R., Nickel R., Lau S., Henderson J., Lee Y.A. The eczema risk variant on chromosome 11q13 (rs7927894) in the population-based ALSPAC cohort: a novel susceptibility factor for asthma and hay fever. Hum. Mol. Genet. 2011; 20 (12): 2443–2449. doi: 10.1093/hmg/ddr117

25. Ferreira M.A.R., Matheson M.C., Tang C.S., Granell R., Ang W., Hui J., KieferA.K., Duffy D.L., Baltic S., Danoy P., Bui M., Price L., Sly P.D., Eriksson N., Madden P.A., Abramson M.J., Holt P.G., Heath A.C., Hunter M., Musk B., Robertson C.F., Le Souëf P., Montgomery G.W., Henderson A.J., Tung J.Y., Dharmage S.C., Brown M.A., James A., Thompson P.J., Pennell C., Martin N.G., Evans D.M., Hinds D.A., Hopper J.L. Genome-wide association analysis identifies 11 risk variants associated with the asthma with hay fever phenotype. J. Allergy Clin. Immunol. 2014; 133 (6): 1564–1571. doi: 10.1016/j.jaci.2013.10.030

26. Marenholz I., Esparza-Gordillo J., Rüschendorf F., Bauerfeind A., Strachan D.P., Spycher B.D., Baurecht H., Margaritte-Jeannin P., Sääf A., Kerkhof M., … Lee Y.A. Meta-analysis identifies seven susceptibility loci involved in the atopic march. Nat. Commun. 2015; 6: 8804. doi: 10.1038/ncomms9804

27. Ferreira M.A., Vonk J.M., Baurecht H., Marenholz I., Tian C., Hoffman J.D., Helmer Q., Tillander A., Ullemar V., van Dongen J., … Paternoster L. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat. Genet. 2017; 49 (12): 1752–1757. doi: 10.1038/ng.3985

28. Zhu Z., Lee P.H., Chaffin M.D., Chung W., Loh P.R., Lu Q., Christiani D.C., Liang L. A genomewide cross-trait analysis from UK Biobank highlights the shared genetic architecture of asthma and allergic diseases. Nat. Genet. 2018; 50 (6): 857–864. doi: 10.1038/s41588-018-0121-0

29. Johansson Å., Rask-Andersen M., Karlsson T., Ek W.E. Genome-wide association analysis of 350 000 Caucasians from the UK Biobank identifies novel loci for asthma, hay fever and eczema. Hum. Mol. Genet. 2019; 28 (23): 4022-–4041. doi: 10.1093/hmg/ddz175

30. Melén E., Granell R., Kogevinas M., Strachan D., Gonzalez J.R., Wjst M., Jarvis D., Ege M., Braun-Fahrländer C., Genuneit J., … Lasky-Su J. Genome-wide association study of body mass index in 23 000 individuals with and without asthma. Clin. Exp. Allergy. 2013; 43 (4): 463–474. doi: 10.1111/cea.12054

31. Barrett J.C., Hansoul S., Nicolae D.L., Cho J.H., Duerr R.H., Rioux J.D., Brant S.R., Silverberg M.S., Taylor K.D., Barmada M.M., … Daly M.J. Genomewide association defines more than 30 distinct susceptibility loci for Crohn’s diseases. Nat. Genet. 2008; 40 (8): 955–962. doi: 10.1038/ng.175

32. Probst-Kepper M., Balling R., Buer J. FOXP3: required but not sufficient. the role of GARP (LRRC32) as a safeguard of the regulatory phenotype. Curr. Mol. Med. 2010; 10 (6): 533–539. doi: 10.2174/1566524011009060533

33. Trehearne A. Genetics, lifestyle and environment. UK Biobank is an open access resource following the lives of 500,000 participants to improve the health of future generations. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2016; 59 (3): 361–367. doi: 10.1007/s00103-015-2297-0

34. Zhu Y., Tazearslan C., Suh Y. Challenges and progress in interpretation of non-coding genetic variants associated with human disease. Exp. Biol. Med. (Maywood). 2017; 242 (13): 1325–1334. doi: 10.1177/1535370217713750

35. Schaub M.A., Boyle A.P., Kundaje A., Batzoglou S., Snyder M. Linking disease associations with regulatory information in the human genome. Genome Res. 2012; 22 (9): 1748–1759. doi: 10.1101/gr.136127.111

36. Maurano M.T., Humbert R., Rynes E., Thurman R.E., Haugen E., Wang H., Reynolds A.P., Sandstrom R., Qu H., Brody J., Shafer A., Neri F., Lee K., Kutyavin T., Stehling-Sun S., Johnson A.K., Canfield T.K., Giste E., Diegel M., Bates D., Hansen R.S., Neph S., Sabo P.J., Heimfeld S., Raubitschek A., Ziegler S., Cotsapas C., Sotoodehnia N., Glass I., Sunyaev S.R., Kaul R., Stamatoyannopoulos J.A. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012; 337 (6099): 1190– 1195. doi: 10.1126/science.1222794

37. Igartua C., Myers R.A., Mathias R.A., PinoYanes M., Eng C., Graves P.E., Levin A.M., Del-RioNavarro B.E., Jackson D.J., Livne O.E., Rafaels N., Edlund C.K., Yang J.J., Huntsman S., Salam M.T., Romieu I., Mourad R., Gern J.E., Lemanske R.F., Wyss A., Hoppin J.A., Barnes K.C., Burchard E.G., Gauderman W.J., Martinez F.D., Raby B.A., Weiss S.T., Williams L.K., London S.J., Gilliland F.D., Nicolae D.L., Ober C. Ethnic-specific associations of rare and low-frequency DNA sequence variants with asthma. Nat. Commun. 2015; 6: 5965. doi: 10.1038/ncomms6965

38. Demenais F., Margaritte-Jeannin P., Barnes K.C., Cookson W.O.C., Altmüller J., Ang W., Barr R.G., Beaty T.H., Becker A.B., Beilby J., … Nicolae D.L. Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks. Nat. Genet. 2018; 50 (1): 42–53. doi: 10.1038/s41588-017-0014-7

39. Kabesch M., Tost J. Recent findings in the genetics and epigenetics of asthma and allergy. Semin. Immunopathol. 2020; 42 (1): 43–60. doi: 10.1007/s00281-019-00777-w

40. Das S., Miller M., Broide D.H. Chromosome 17q21 genes ORMDL3 and GSDMB in asthma and immune diseases. Adv. Immunol. 2017; 135: 1–52. doi: 10.1016/bs.ai.2017.06.001

41. Bragina E.Y., Goncharova I.A., Garaeva A.F., Nemerov E.V., Babovskaya A.A., Karpov A.B., Semenova Y.V., Zhalsanova I.Z., Gomboeva D.E., Saik O.V., Zolotareva O.I., Ivanisenko V.A., Dosenko V.E., Hofestaedt R., Freidin M.B. Molecular relationships between bronchial asthma and hypertension as comorbid diseases. J. Integr. Bioinform. 2018; 15 (4): 20180052. doi: 10.1515/jib-2018-0052

42. Брагина Е.Ю., Гончарова И.А., Фрейдин М.Б., Жалсанова И.Ж., Гомбоева Д.Е., Немеров Е.В., Пузырев В.П. Гаплотипический анализ генов CAT, TLR4 и IL10 у больных бронхиальной астмой с сопутствующей артериальной гипертензией. Сиб. науч. мед. журн. 2019; 39 (6): 55–64. doi: 10.15372/SSMJ20190607 Bragina E.Yu., Goncharova I.A., Freidin M.B., Zhalsanova I.Zh., Gomboeva D.E., Nemerov E.V., Puzyrev V.P. Analysis of haplotypes of CAT, TLR4, and IL10 genes in bronchial asthma patients comorbid with arterial hypertension. Sibirskiy nauchnyy meditsinskiy zhurnal = Siberian Scientific Medical Journal. 2019; 39 (6): 55–64. [In Russian]. doi: 10.15372/SSMJ20190607

43. Saik O.V., Demenkov P.S., Ivanisenko T.V., Bragina E.Y., Freidin M.B., Goncharova I.A., Dosenko V.E., Zolotareva O.I., Hofestaedt R., Lavrik I.N., Rogaev E.I., Ivanisenko V.A. Novel candidate genes important for asthma and hypertension comorbidity revealed from associative gene networks. BMC Med. Genomics. 2018; 11 (1): 15. doi: 10.1186/s12920-018-0331-4

44. Drevytska T., Morhachov R., Tumanovska L., Portnichenko G., Nagibin V., Boldyriev O., LapikovaBryhinska T., Gurianova V., Donskoi B., Freidin M., Ivanisenko V., Bragina E.Y., Hofestädt R., Dosenko V. shRNA-induced knockdown of a bioinformatically predicted target IL10 influences functional parameters in spontaneously hypertensive rats with asthma. J. Integr. Bioinform. 2018; 15 (4): 20180053. doi: 10.1515/jib-2018-0053

45. Zolotareva O., Saik O.V., Königs C., Bragina E.Y., Goncharova I.A., Freidin M.B., Dosenko V.E., Ivanisenko V.A., Hofestädt R. Comorbidity of asthma and hypertension may be mediated by shared genetic dysregulation and drug side effects. Sci. Rep. 2019; 9: 16302. doi.org/10.1038/s41598-019-52762-w

46. Lemonnier N., Melén E., Jiang Y., Joly S., Mé- nard C., Aguilar D., Acosta-Perez E., Bergström A., Boutaoui N., Bustamante M., Canino G., Forno E., Ramon González J., Garcia-Aymerich J., Gruzieva O., Guerra S., Heinrich J., Kull I., Ibarluzea Maurolagoitia J., Santa-Marina Rodriguez L., Thiering E., Wickman M., Akdis C., Akdis M., Chen W., Keil T., Koppelman G.H., Siroux V., Xu C.J., Hainaut P., Standl M., Sunyer J., Celedón J.C., Maria Antó J., Bousquet J. A novel whole blood gene expression signature for asthma, dermatitis and rhinitis multimorbidity in children and adolescents. Allergy. 2020. Available at: https://onlinelibrary.wiley.com/doi/full/10.1111/all.14314

47. Lee J., Kim B., Chu H., Zhang K., Kim H., Kim J.H., Kim S.H., Pan Y., Noh J.Y., Sun Z., Lee J., Jeong K.Y., Park K.H., Park J.-W., Kupper T.S., Park C.O., Lee K.H. FABP5 as a possible biomarker in atopic march: FABP5-induced Th17 polarization, both in mouse model and human samples. EBioMedicine. 2020; 58: 102879. doi: 10.1016/j.ebiom.2020.102879

48. Glatz J.F., van der Vusse G.J. Cellular fatty acid-binding proteins: their function and physiological significance. Prog. Lipid Res. 1996; 35 (3): 243–282. doi: 10.1016/s0163-7827(96)00006-9

49. Ziyab A.H., Hankinson J., Ewart S., Schauberger E., Kopec-Harding K., Zhang H., Custovic A., Arshad H., Simpson A., Karmaus W.J. Epistasis between FLG and IL4R genes on the risk of allergic sensitization: results from two population-based birth cohort studies. Sci. Rep. 2018; 8 (1): 3221. doi: 10.1038/s41598-018-21459-x

50. Фрейдин М.Б., Брагина Е.Ю., Салтыкова И.В., Деева Е.В., Огородова Л.М., Пузырёв В.П. Влияние дополнительной болезни (коморбидности) на ассоциацию аллергического ринита с вариантом rs12621643 гена KCNE4. Генетика. 2013; 49 (4): 541–544. doi: 10.7868/S001667581304005X Freĭdin M.B., Bragina E.Iu., Saltykova I.V., Deeva E.V., Deeva E.V., Ogorodova L.M., Puzyrev V.P. Effect of additional disease (comorbidity) on association of allergic rhinitis with KCNE4 gene rs12621643 variant. Russ. J. Genet. 2013; 49 (4): 473–475. doi: 10.1134/S1022795413040054

51. Engebretsen K.A., Bandier J., Kezic S., Riethmüller C., Heegaard N.H.H., Carlsen B.C., Linneberg A., Johansen J.D., Thyssen J.P. Concentration of filaggrin monomers, its metabolites and corneocyte surface texture in individuals with a history of atopic dermatitis and controls. J. Eur. Acad. Dermatol. Venereol. 2018; 32 (5): 796–804. doi: 10.1111/jdv.14801

52. Osawa R., Akiyama M., Shimizu H. Filaggrin gene defects and the risk of developing allergic disorders. Allergol. Int. 2011; 60 (1): 1–9. doi: 10.2332/allergolint.10-RAI-0270

53. Smith F.J.D., Irvine A.D., Terron-Kwiatkowski A., Sandilands A., Campbell L.E., Zhao Y., Liao H., Evans A.T., Goudie D.R., Lewis-Jones S., Arseculeratne G., Munro C.S., SergeantA., O’Regan G., Bale S.J., Compton J.G., DiGiovanna J.J., Presland R.B., Fleckman P., McLean W.H.I. Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat. Genet. 2006; 38 (3): 337–342. doi: 10.1038/ng1743

54. Palmer C.N.A., IrvineA.D., Terron-Kwiatkowski A., Zhao Y., Liao H., Lee S.P., Goudie D.R., Sandilands A., Campbell L.E., Smith F.J.D., O’Regan G.M., Watson R.M., Cecil J.E., Bale S.J., Compton J.G., DiGiovanna J.J., Fleckman P., Lewis-Jones S., Arseculeratne G., Sergeant A., Munro C.S., El Houate B., McElreavey K., Halkjaer L.B., Bisgaard H., Mukhopadhyay S., McLean W.H.I. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat. Genet. 2006; 38 (4): 441–446. doi: 10.1038/ng1767

55. Osawa R., Akiyama M., Shimizu H. Filaggrin gene defects and the risk of developing allergic disorders. Allergol. Int. 2011; 60 (1): 1–9. doi: 10.2332/allergolint.10-RAI-0270

56. Smieszek S.P., Welsh S., Xiao C., Wang J., Polymeropoulos C., Birznieks G., Polymeropoulos M.H. Correlation of age-of-onset of atopic dermatitis with filaggrin loss-of-function variant status. Sci. Rep. 2020; 10 (1): 2721. doi: 10.1038/s41598-020-59627-7

57. Chan A., Terry W., Zhang H., Karmaus W., Ewart S., Holloway J.W., Roberts G., Kurukulaaratchy R., Arshad S.H. Filaggrin mutations increase allergic airway disease in childhood and adolescence through interactions with eczema and aeroallergen sensitization. Clin. Exp. Allergy. 2018; 48 (2): 147–155. doi: 10.1111/cea.13077

58. Watanabe K., Stringer S., Frei O., Mirkov M.U., de Leeuw C., Polderman T.J.C., van der Sluis S., Andreassen O.A., Neale B.M., Posthuma D. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet. 2019; 51 (9): 1339–1348. doi: 10.1038/s41588-019-0481-0

59. Løset M., Brown S.J., Saunes M., Hveem K. Genetics of atopic dermatitis: from DNA sequence to clinical relevance. Dermatology. 2019; 235 (5): 355–364. doi: 10.1159/000500402

60. Oyoshi M.K., Murphy G.F., Geha R.S. Filaggrin-deficient mice exhibit TH17-dominated skin inflammation and permissiveness to epicutaneous sensitization with protein antigen. J. Allergy Clin. Immunol. 2009; 124 (3): 485–493. doi: 10.1016/j.jaci.2009.05.042

61. Rasheed Z., Zedan K., Saif G.B., Salama R.H., Salem T., Ahmed A.A., El-Moniem A.A., Elkholy M., Al Robaee A.A., Alzolibani A.A. Markers of atopic dermatitis, allergic rhinitis and bronchial asthma in pediatric patients: correlation with filaggrin, eosinophil major basic protein and immunoglobulin E. Clin. Mol. Allergy. 2018; 16: 23. doi: 10.1186/s12948-018-0102-y

62. Fallon P.G., Sasaki T., Sandilands A., Campbell L.E., Saunders S.P., Mangan N.E., Callanan J.J., Kawasaki H., Shiohama A., Kubo A., Sundberg J.P., Presland R.B., Fleckman P., Shimizu N., Kudoh J., Irvine A.D., Amagai M., McLean W.H.I. A homozygous frameshift mutation in the mouse Flg gene facilitates enhanced percutaneous allergen priming. Nat. Genet. 2009; 41 (5): 602–608. doi: 10.1038/ng.358

63. Langkilde A., Olsen L.C., Sætrom P., Drabløs F., Besenbacher S., Raaby L., Johansen C., Iversen L. Pathway analysis of skin from psoriasis patients after adalimumab treatment reveals new early events in the anti-inflammatory mechanism of anti-TNF-α. PLoS One. 2016; 11 (12): e0167437. doi: 10.1371/journal.pone.0167437

64. Sunryd J.C., Cheon B., Graham J.B., Giorda K.M., Fissore R.A., Hebert D.N. TMTC1 and TMTC2 are novel endoplasmic reticulum tetratricopeptide repeat-containing adapter proteins involved in calcium homeostasis. J. Biol. Chem. 2014; 289 (23): 16085–16099. doi: 10.1074/jbc.M114.554071

65. Ober C., Yao T.C. The genetics of asthma and allergic disease: a 21st century perspective. Immunol. Rev. 2011; 242 (1): 10–30. doi: 10.1111/j.1600-065X.2011.01029.x

66. Ullemar V., Magnusson P.K., Lundholm C., Zettergren A., Melén E., Lichtenstein P., Almqvist C. Heritability and confirmation of genetic association studies for childhood asthma in twins. Allergy. 2016; 71 (2): 230–238. doi: 10.1111/all.12783

67. Bataille V., Lens M., Spector T.D. The use of the twin model to investigate the genetics and epigenetics of skin diseases with genomic, transcriptomic and methylation data. J. Eur. Acad. Dermatol. Venereol. 2012; 26 (9): 1067–1073. doi: 10.1111/j.1468-3083.2011.04444.x

68. Blair David R., Lyttle Christopher S., Mortensen Jonathan M., Bearden Charles F., Jensen Anders B., Khiabanian H., Melamed R., Rabadan R., Bernstam Elmer V., Brunak S., Jensen Lars J., Nicolae D., Shah Nigam H., Grossman Robert L., Cox Nancy J., White Kevin P., Rzhetsky A. A nondegenerate code of deleterious variants in Mendelian loci contributes to complex disease risk. Cell. 2013; 155 (1): 70–80. doi: 10.1016/j.cell.2013.08.030

69. Kerner G., Ramirez-Alejo N., Seeleuthner Y., Yang R., Ogishi M., Cobat A., Patin E., QuintanaMurci L., Boisson-Dupuis S., Casanova J.L., Abel L. Homozygosity for TYK2 P1104A underlies tuberculosis in about 1 % of patients in a cohort of European ancestry. Proc. Natl. Acad. Sci. USA. 2019; 116 (21): 10430–10434. doi: 10.1073/pnas.1903561116

70. Guardamagna O., Restagno G., Rolfo E., Pederiva C., Martini S., Abello F., Baracco V., Pisciotta L., Pino E., Calandra S., Bertolini S. The type of LDLR gene mutation predicts cardiovascular risk in children with familial hypercholesterolemia. J. Pediatr. 2009; 155 (2): 199–204. e2. doi: 10.1016/j.jpeds.2009.02.022

71. Абрамычева Н.Ю., Федотова Е.Ю., Багыева Г.Х., Клюшников С.А., Иванова-Смоленская И.А., Иллариошкин С.Н. Мутации в гене GBA при болезни Паркинсона. Мед. генет. 2011; 107 (5): 22–27. Abramycheva N.Yu., Fedotova E.Yu., Bagieva G.K., Klyushnikov S.A., Ivanova-Smolenskaya I.A., Illarioshkin S.N. Mutations of the GBA gene in Parkinson’s disease. Meditsinskaya genetika = Medical Genetics. 2011; 107 (5): 22–27. [In Russian].

72. Boyle E.A., Li Y.I., Pritchard J.K. An expanded view of complex traits: from polygenic to omnigenic. Cell. 2017; 169 (7): 1177–1186. doi: 10.1016/j.cell.2017.05.038


Для цитирования:


Брагина Е.Ю., Фрейдин М.Б., Пузырёв В.П. Генетика синтропии «атопический марш». Сибирский научный медицинский журнал. 2020;40(5):4-17. https://doi.org/10.15372/SSMJ20200501

For citation:


Bragina E.Yu., Freidin M.B., Puzyrev V.P. Genetics of «atopic march» syntropy. Siberian Scientific Medical Journal. 2020;40(5):4-17. (In Russ.) https://doi.org/10.15372/SSMJ20200501

Просмотров: 7


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)