Preview

Сибирский научный медицинский журнал

Advanced search

Combined administration of synthetic monophenol TS-13 with doxorubicin enhances the antimitotic effect and mitigates adverse effects of the cytostatic in tumor growth model

https://doi.org/10.18699/SSMJ20250619

Abstract

Chemotherapy toxicity and tumor chemoresistance remain major challenges in modern oncology. One promising strategy to improve therapeutic efficacy and reduce adverse effects is the use of redox-active compounds that attenuate oxidative stress, in particular by activating the antioxidant-responsive Keap1/Nrf2/ARE signaling pathway.

The aim of this study was to evaluate the effects of the synthetic monophenol TS-13, which exhibits both direct and indirect antioxidant activity, on the development and metastasis of Lewis lung carcinoma in mice.

Material and methods. A total of 106 female C57BL mice were randomized into 12 groups. For one month, some groups received oral administration of TS-13 or the reference compound tert-butylhydroquinone (tBHQ) (100 mg/kg). Subsequently, selected groups were implanted intramuscularly with 2×105 Lewis lung carcinoma cells. Some animals then received two injections of doxorubicin (total dose 8 mg/kg). After 7 weeks, tumor and lung tissues were processed for standard histological analysis. Tumor growth activity was assessed by counting mitotic figures, and the general morphological characteristics of tumor and lung tissues were described.

Results. Both doxorubicin and TS-13 demonstrated marked antimitotic effects, which were further enhanced by their combined administration. Combination therapy with cytostatic and TS-13 more effectively suppressed metastatic activity and reduced the overall area of tumor lesions in the lungs compared to monotherapy with doxorubicin, TS-13, or tBHQ. Administration of either TS-13 or tBHQ equally inhibited the development of lung metastases, reducing the number of tumor cells and the formation of large metastatic foci. Notably, the use of TS-13 in combination with doxorubicin partially restored the integrity of the bronchial epithelium.

Conclusions. The synthetic monophenol TS-13, acting as both a direct antioxidant and an activator of the Keap1/Nrf2/ARE pathway, demonstrates potential for optimizing anticancer therapy by enhancing the effect of doxorubicin and suppressing tumor growth and metastasis. In addition, its combined use with doxorubicin helps reduce tissue damage and mitigates the adverse impact on the bronchial epithelium. These properties of TS-13 highlight its prospects for reducing side effects and improving the efficacy of standard chemotherapy regimens.

About the Authors

A. E. Serykh
Federal Research Center of Fundamental and Translational Medicine
Russian Federation

Anastasia E. Serykh

630117, Novosibirsk, Timakova st., 2



M. V. Khrapova
Federal Research Center of Fundamental and Translational Medicine
Russian Federation

Marina V. Khrapova - candidate of biological sciences.

630117, Novosibirsk, Timakova st., 2



E. S. Petrova
Federal Research Center of Fundamental and Translational Medicine
Russian Federation

Ekaterina S. Petrova - candidate of chemical sciences.

630117, Novosibirsk, Timakova st., 2



L. P. Romakh
Federal Research Center of Fundamental and Translational Medicine
Russian Federation

Lidia P. Romakh

630117, Novosibirsk, Timakova st., 2



N. V. Kandalintseva
Novosibirsk State Pedagogical University
Russian Federation

Natalya V. Kandalintseva - doctor of chemical sciences.

630126, Novosibirsk, Vilyuiskaya st., 28



E. B. Menshchikova
Federal Research Center of Fundamental and Translational Medicine
Russian Federation

Elena B. Menshchikova - doctor of medical sciences.

630117, Novosibirsk, Timakova st., 2



References

1. Bray F., Laversanne M., Sung H., Ferlay J., Siegel R.L., Soerjomataram I., Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024;74(3):229–263. doi: 10.3322/caac.21834

2. Collaborators GBDCoD. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2024;403(10440):2100–2132. doi: 10.1016/S01406736(24)00367-2

3. Klaunig J.E. Oxidative stress and cancer. Curr. Pharm. Des. 2018;24(40):4771-4778. doi: 10.2174/1381612825666190215121712

4. Zenkov N.K., N.K., Kozhin P.M., Vcherashnyaya A.V., Martinovich G.G., Kandalintseva N.V., Menshchikova E.B. Features of redox regulation in tumor cells. Sibirskij nauchnyj medicinskij zhurnal = Siberian Scientific Medical Journal. 2019;39(2):11–26. [In Russian]. doi: 10.15372/SSMJ20190202

5. Azmanova M., Pitto-Barry A. Oxidative stress in cancer therapy: friend or enemy? Chembiochem. 2022;23(10):e202100641. doi: 10.1002/cbic.202100641

6. Saikolappan S., Kumar B., Shishodia G., Koul S., Koul H.K. Reactive oxygen species and cancer: A complex interaction. Cancer Lett. 2019;452:132–143. doi: 10.1016/j.canlet.2019.03.020

7. Iqbal M.J., Kabeer A., Abbas Z., Siddiqui H.A., Calina D., Sharifi-Rad J., Cho W.C. Interplay of oxidative stress, cellular communication and signaling pathways in cancer. Cell Commun Signal. 2024;22(1):7. doi: 10.1186/s12964-023-01398-5

8. Hasan S.K., Jayakumar S., Espina Barroso E., Jha A., Catalano G., Sandur S.K., Noguera N.I. Molecular targets of oxidative stress: Focus on nuclear factor erythroid 2-related factor 2 function in leukemia and other cancers. Cells. 2025;14(10):14100713. doi: 10.3390/cells14100713

9. Morgenstern C., Lastres-Becker I., Demirdogen B.C., Costa V.M., Daiber A., Foresti R., Motterlini R., Kalyoncu S., Arioz B.I., Genc S., … Copple I.M. Biomarkers of Nrf2 signalling: Current status and future challenges. Redox Biol. 2024;72:103134. doi: 10.1016/j.redox.2024.103134

10. Menshchikova E.B., Khrapova M.V., Kozhin P.M., Chechushkov A.V., Petrova E.S., Serykh A.E., Romakh L.P., Kandalintseva N.V. Original synthetic monophenolic antioxidant with combined effect inhibits tumor growth in vivo. Sibirskij nauchnyj medicinskij zhurnal = Siberian Scientific Medical Journal. 2024;44(6):128137. [In Russian]. doi: 10.18699/SSMJ20240612

11. Chen F., Xiao M., Hu S., Wang M. Keap1-Nrf2 pathway: a key mechanism in the occurrence and development of cancer. Front. Oncol. 2024;14:1381467. doi: 10.3389/fonc.2024.1381467

12. Yang X., Liu Y., Cao J., Wu C., Tang L., Bian W., Chen Y., Yu L., Wu Y., Li S., Shen Y., Xia J., Du J. Targeting epigenetic and post-translational modifications of NRF2: key regulatory factors in disease treatment. Cell Death Discov. 2025;11(1):189. doi: 10.1038/s41420-025-02491-z

13. Menshchikova E.B., Zenkov N.K., Kozhin P.M., Chechushkov A.V., Pavlov V.S., Romakh L.P., Khrapova M.V., Serykh A.E., Gritsyk O.B., Kandalintseva N.V. Effect of new water-soluble phenolic antioxidants on the activity of Nrf2-driven enzymes, glutathione system, and Nrf2 translocation into the nucleus. Sibirskij nauchnyj medicinskij zhurnal = Siberian Scientific Medical Journal. 2020;40(6):58–69. [In Russian]. doi: 10.15372/SSMJ20200606

14. Khrapov S.E., Kozhin P.M., Khrapova M.V., Serykh A.E., Romakh L.P., Pavlov V.S., Chechushkov A.V., Kholshin S.V., Zenkov N.K., Menshchikova E.B. Increased expression of autophagy and Nrf2-dependent signaling pathway genes by new monophenolic antioxidants depends on their structure. Sibirskij nauchnyj medicinskij zhurnal = Siberian Scientific Medical Journal. 2021;41(3):25–31. [In Russian]. doi: 10.18699/SSMJ20210303

15. Zenkov N.K., Menshchikova E.B., Kandalintseva N.V., Oleynik A.S., Prosenko A.E., Gusachenko O.N., Shklyaeva O.A., Vavilin V.A., Lyakhovich V.V. Antioxidant and anti-inflammatory properties of new water-soluble sulfur-containing phenolic compounds. Biokhimiya = Biochemistry (Moscow). 2007;72(6):790–798. [In Russian].

16. Kciuk M., Gielecinska A., Mujwar S., Kolat D., Kaluzinska-Kolat Z., Celik I., Kontek R. Doxorubicin-an agent with multiple mechanisms of anticancer activity. Cells. 2023;12(4):12040659. doi: 10.3390/cells12040659

17. Rojo de la Vega M., Chapman E., Zhang D.D. NRF2 and the Hallmarks of Cancer. Cancer Cell. 2018;34(1):21–43. doi: 10.1016/j.ccell.2018.03.022

18. Jiang X.S., Cai M.Y., Li X.J., Zhong Q., Li M.L., Xia Y.F., Shen Q., Du X.G., Gan H. Activation of the Nrf2/ARE signaling pathway protects against palmitic acid-induced renal tubular epithelial cell injury by ameliorating mitochondrial reactive oxygen speciesmediated mitochondrial dysfunction. Front Med (Lausanne). 2022;9:939149. doi: 10.3389/fmed.2022.939149

19. Bae T., Kwak M.K. Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 pathway and its interplay with oncogenes in lung tumorigenesis. J. Cancer Prev. 2024;29(4):89–98. doi:10.15430/JCP.24.021

20. Guo L., Zhang J., Li Y., Gao Y., Huang J., Liu M., Li J., Chai W., Li Y. 3,3’-diindolylmethane induces ferroptosis and inhibits proliferation in nonsmall-cell lung cancer through the AHR/NRF2/GPX4 axis. Discov. Oncol. 2025;16(1):344. doi: 10.1007/s12672-025-02096-z

21. Wang J., Zhuang H., Yang X., Guo Z., Zhou K., Liu N., An Y., Chen Y., Zhang Z., Wang M., Chang X. Exploring the mechanism of ferroptosis induction by sappanone A in cancer: insights into the mitochondrial dysfunction mediated by NRF2/xCT/GPX4 axis. Int. J. Biol. Sci. 2024;20(13):5145–5161. doi: 10.7150/ijbs.96748

22. Mei J., Tian H.X., Zhang X.Y., Chen Y.S., Wang L.Y., Zhang Z., Zhang Y.L., Rong D.C., Zeng J., Dong M., … Zhang W. Heme oxygenase 1 (HO-1) is a drug target for reversing cisplatin resistance in non-small cell lung cancer. J. Adv. Res. 2025;S20901232(25)00347-9. doi: 10.1016/j.jare.2025.05.033

23. Occhiuto C.J., Moerland J.A., Leal A.S., Gallo K.A., Liby K.T. The multi-faceted consequences of Nrf2 activation throughout carcinogenesis. Mol. Cells. 2023;46(3):176–186. doi: 10.14348/molcells.2023.2191

24. Lin L., Wu Q., Lu F., Lei J., Zhou Y., Liu Y., Zhu N., Yu Y., Ning Z., She T., Hu M. Nrf2 signaling pathway: current status and potential therapeutic targetable role in human cancers. Front. Oncol. 2023;13:1184079. doi: 10.3389/fonc.2023.1184079

25. Tian Y., Tang L., Wang X., Ji Y., Tu Y. Nrf2 in human cancers: biological significance and therapeutic potential. Am. J. Cancer Res. 2024;14(8):3935–3961. doi: 10.62347/LZVO6743

26. Jenkins T., Gouge J. Nrf2 in cancer, detoxifying enzymes and cell death programs. Antioxidants (Basel). 2021;10(7):10071030. doi: 10.3390/antiox10071030

27. Nakamura H., Takada K. Reactive oxygen species in cancer: Current findings and future directions. Cancer Sci. 2021;112(10):3945–3952. doi: 10.1111/cas.15068

28. Sritharan S., Sivalingam N. A comprehensive review on time-tested anticancer drug doxorubicin. Life Sci. 2021;278:119527. doi: 10.1016/j.lfs.2021.119527

29. Okazaki K., Papagiannakopoulos T., Motohashi H. Metabolic features of cancer cells in NRF2 addiction status. Biophys. Rev. 2020;12(2):435–441. doi: 10.1007/s12551-020-00659-8

30. Imaizumi N., Aniya Y. The role of a membrane-bound glutathione transferase in the peroxynitrite-induced mitochondrial permeability transition pore: formation of a disulfide-linked protein complex. Arch. Biochem. Biophys. 2011;516(2):160–172. doi: 10.1016/j.abb.2011.10.012

31. Martinovich G.G., Martinovich I.V., Zenkov N.K., Menshchikova E.B., Kandalintseva N.V., Cherenkevich S.N. The ARE gene inducer, phenolic antioxidant TS-13, induces tumor cell death through the mitochondrial pathway. Biofizika = Biophysics (Moscow). 2015;60(1):120–128. [In Russian].

32. DeBlasi J.M., DeNicola G.M. Dissecting the crosstalk between NRF2 signaling and metabolic processes in cancer. Cancers (Basel). 2020;12(10):12103023. doi: 10.3390/cancers12103023

33. Korga A., Ostrowska M., Iwan M., Herbet M., Dudka J. Inhibition of glycolysis disrupts cellular antioxidant defense and sensitizes HepG2 cells to doxorubicin treatment. FEBS Open Bio. 2019;9(5):959–972. doi: 10.1002/2211-5463.12628


Review

Views: 18

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)