Preview

Сибирский научный медицинский журнал

Advanced search

Modern materials and alloys for bone defect reconstruction in the maxillofacial area: from traditional solutions to innovative technologies

https://doi.org/10.18699/SSMJ20250606

Abstract

The aim of this review article is to systematize current data on materials and alloys used for the restoration of bone defects in the maxillofacial region, evaluate their advantages and limitations, and assess their prospects for clinical application. Titanium remains the “gold standard” in medical implants due to its high strength, biocompatibility, and durability. However, modern trends in medicine and materials science indicate a growing interest in bioresorbable materials and 3D technologies, which open new horizons for the development of more advanced and functional implants. These innovative approaches not only enhance implant integration with biological tissues but also minimize the risks of long-term complications, such as bone stress shielding or the need for secondary surgeries to remove the implant. One of the most crucial aspects of modern implantology is the necessity for a personalized approach to each patient. This includes considering not only anatomical features but also individual biological and physiological parameters. Interdisciplinary research that brings together the expertise of surgeons, material scientists, bioengineers, and biologists plays a key role in the successful development of new materials and technologies, which present immense opportunities for improving patients’ quality of life. However, to fully realize this potential, continued active research, strengthened interdisciplinary collaboration, and attention not only to technical aspects but also to ethical and economic considerations in the development and implementation of innovations are essential.

About the Authors

A. A. Kabanova
Vitebsk State Medical University
Belarus

Arina A. Kabanova - doctor of medical sciences.

210009, Vitebsk, Frunze st., 27



V. K. Okulich
Vitebsk State Medical University
Belarus

Vitaliy K. Okulich - candidate of medical sciences.

210009, Vitebsk, Frunze st., 27



V. N. Shut
Vitebsk State Technological University
Belarus

Victor N. Shut - doctor of physical and mathematical sciences, professor.

210038, Vitebsk, Moskovsky ave., 72



S. A. Kabanova
Vitebsk State Medical University
Belarus

Svetlana A. Kabanova - candidate of medical sciences.

210009, Vitebsk, Frunze st., 27



References

1. Müller-Heupt L.K., Schiegnitz E., Kaya S., Jacobi-Gresser E., Kämmerer P.W., Al-Nawas B. Diagnostic tests for titanium hypersensitivity in implant dentistry: a systematic review of the literature. Int. J. Implant. Dent. 2022;8(1):29. doi: 10.1186/s40729-02200428-0

2. Gentile P., Chiono V., Carmagnola I., Hatton P.V. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int. J. Mol. Sci. 2014;15(3):3640–3659. doi: 10.3390/ijms15033640

3. Kochanowski A., Hoene A., Patrzyk M., Walschus U., Finke B., Luthringer B., Feyerabend F., Willumeit R., Lucke S., Schlosser M. In vivo investigation of the inflammatory response against phospholipid-coated titanium implants in a rat model. J. Mater. Sci. Mater. Med. 2011;22(4):1015–1026. doi: 10.1007/s10856-011-4287-6

4. Hornberger H., Virtanen S., Boccaccini A.R. Biomedical coatings on magnesium alloys – A review. Acta Biomater. 2012;8(7):2442–2455. doi: 10.1016/j.actbio.2012.04.012

5. Wang X., Xu S., Zhou S., Xu W., Leary M., Choong P., Qian M., Brandt M., Xie Y.M. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials. 2016;83:127–141. doi: 10.1016/j.biomaterials.2016.01.012

6. Yin C., Zhang Y., Cai Q., Li B., Yang H., Wang H., Qi H., Zhou Y., Meng W. Effects of the micro-nano surface topography of titanium alloy on the biological responses of osteoblast. J. Biomed. Mater. Res. A. 2017;105(3):757–769. doi: 10.1002/jbm.a.35941

7. Nayak T.R., Andersen H., Makam V.S., Khaw C., Bae S., Xu X., Ee P.L., Ahn J.H., Hong B.H., Pastorin G., Özyilmaz B. Graphene for controlled osteogenic differentiation of stem cells. ACS Nano. 2011;5(6):4670–4678. doi: 10.1021/nn200500h

8. Salgado A.J., Coutinho O.P., Reis R.L. Bone tissue engineering: state of the art and future trends. Macromol. Biosci. 2004;4(8):743–765. doi: 10.1002/mabi.200400026

9. Zheng Z., Gan S., Yang S., Hou C., Zhu Z., Wang H., Yu D., Qian Z., Xu H.H.K., Chen W. Enhanced surface hydrophilicity improves osseointegration of titanium implants via integrin-mediated osteoimmunomodulation. J. Mater. Chem. B. 2025;13(2):496–510. doi: 10.1039/D4TB02360A

10. Sailer I., Strasding M., Valente N.A., Zwahlen M., Liu S., Pjetursson B.E. A systematic review of the survival and complication rates of zirconia-ceramic and metal-ceramic multiple-unit fixed dental prostheses. Clin. Oral Implants. Res. 2018;29(Suppl 16):184–198. doi: 10.1111/clr.13277

11. Chen Y., Xu Z., Smith C., Sankar J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014;10(11):4561– 4573. doi: 10.1016/j.actbio.2014.07.005

12. Macak J.M., Zlamal M., Krysa J., Schmuki P. Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small. 2007;3(2):300–304. doi: 10.1002/smll.200600426

13. Zhang E., Yang L. Microstructure, mechanical properties and bio-corrosion properties of Mg-Zn-MnCa alloy for biomedical application. Mater. Sci. Eng. A. 2008;497:111–118. doi: 10.1016/j.msea.2008.06.019

14. Hench L.L. The story of bioglass. J. Mater. Sci Mater. Med. 2006;17(11):967–978. doi: 10.1007/s10856-006-0432-z

15. Liu C., Ren Z., Xu Y., Pang S., Zhao X., Zhao Y. Biodegradable magnesium alloys developed as bone repair materials: a review. Scanning. 2018;2018:9216314. doi: 10.1155/2018/9216314

16. Visscher D.O., Farré-Guasch E., Helder M.N., Gibbs S., Forouzanfar T., van Zuijlen P.P., Wolff J. Advances in bioprinting technologies for craniofacial reconstruction. Trends Biotechnol. 2016;34(9):700–710. doi: 10.1016/j.tibtech.2016.04.001

17. Hadi S., Al-Mizraqchi A. Antibacterial activity of zinc oxide nanoparticles on the growth of enterococcus faecalis, candida and total root canal microbiota (in vitro study). Indian J. Public Health Res. Dev. 2019;10(11):2134. doi: 10.5958/09765506.2019.03874.9

18. Yuan L., Ding S., Wen C. Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review. Bioact. Mater. 2018;4(1):56–70. doi: 10.1016/j.bioactmat.2018.12.003

19. Ma R., Tang T. Current strategies to improve the bioactivity of PEEK. Int. J. Mol. Sci. 2014;15(4):5426– 5445. doi: 10.3390/ijms15045426

20. Dorozhkin S.V. Bioceramics of calcium orthophosphates. Biomaterials. 2010;31(7):1465–1485. doi: 10.1016/j.biomaterials.2009.11.050

21. Tarsitano A., Battaglia S., Ricotta F., Bortolani B., Cercenelli L., Marcelli E., Cipriani R., Marchetti C. Accuracy of CAD/CAM mandibular reconstruction: A three-dimensional, fully virtual outcome evaluation method. J. Craniomaxillofac. Surg. 2018;46(7):1121– 1127. doi: 10.1016/j.jcms.2018.05.010

22. Wang X., Xu S., Zhou S., Xu W., Leary M., Choong P., Qian M., Brandt M., Xie Y.M. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials. 2016;83:127–141. doi: 10.1016/j.biomaterials.2016.01.012

23. Jensen S.S., Terheyden H. Bone augmentation procedures in localized defects in the alveolar ridge. Int. J. Oral Maxillofac. Surg. 2009;(24, Suppl.):218–236.

24. Urban I.A., Monje A., Nevins M., Nevins M.L., Lozada J.L., Wang H.L. Vertical bone augmentation utilizing titanium-reinforced d-PTFE membranes: A retrospective multicenter study. Clin. Oral Implants. Res. 2021;32(7):828–839. doi: 10.1111/clr.13755

25. Starch-Jensen T., Mordenfeld A., Spin-Neto R., Jensen S.S. Maxillary sinus floor augmentation with synthetic bone substitutes compared with other grafting materials: A systematic review and meta-analysis. Implant. Dent. 2018;27(3):363–374. doi: 10.1097/ID.0000000000000768

26. Miron R.J., Sculean A., Shuang Y., Bosshardt D.D., Gruber R., Buser D., Chandad F., Zhang Y. Osteoinductive potential of a novel biphasic calcium phosphate bone graft in comparison with autographs, xenografts, and DFDBA. Clin. Oral Implants Res. 2016;27(6):668–675. doi: 10.1111/clr.12647

27. Renvert S., Persson G.R., Pirih F.Q., Camargo P.M. Peri-implant health, peri-implant mucositis, and peri-implantitis: case definitions and diagnostic considerations. J. Clin. Periodontol. 2018;45(Suppl 20):S278–S285. doi: 10.1111/jcpe.12956

28. Dube E., Okuthe G.E. Silver nanoparticle-based antimicrobial coatings: sustainable strategies for microbial contamination control. Microbiol. Res. 2025; 16(6):110. doi: 10.3390/microbiolres16060110

29. Dhawan P. Hypersensitivity to titanium dental implants: a review. J. Oral Implantol. 2023;49(1):1–8. doi: 10.1563/aaid-joi-D-22-00105

30. Schwarz M.S. Mechanical complications of dental implants. Clin. Oral Implants Res. 2000;11(Suppl 1):156–158. doi: 10.1034/j.1600-0501.2000.011s1156.x

31. Nokar S., Moslehifard E., Bahman T., Bayanzadeh M., Nasirpouri F., Nokar A. Accuracy of implant placement using a CAD/CAM surgical guide: an in vitro study. Int. J. Oral Maxillofac. Implants. 2011;26(3):520–526.

32. Schwarz F., Derks J., Monje A., Wang H.L. Peri-implantitis. J. Clin. Periodontol. 2018;45(Suppl 20):S246–S266. doi: 10.1111/jcpe.12954

33. Kassanos P., Hourdakis E. Implantable passive sensors for biomedical applications. Sensors. 2025;25(1):133. doi: 10.3390/s25010133

34. Dirzu N., Lucaciu O., Dirzu D.S., Soritau O., Cenariu D., Crisan B., Tefas L., Campian R.S. BMP-2 delivery through liposomes in bone regeneration. Appl. Sci. 2022;12(3):1373. doi: 10.3390/app12031373

35. Daneshmandi L., Barajaa M., Tahmasbi Rad A., Sydlik S.A., Laurencin C.T. Graphene-based biomaterials for bone regenerative engineering: a comprehensive review of the field and considerations regarding biocompatibility and biodegradation. Adv. Healthc Mater. 2021;10(1):e2001414. doi: 10.1002/adhm.202001414

36. Huan Y., Zhou D., Wu X., He X., Chen H., Li S., Jia B., Dou Y., Fei X., Wu S., … Fei F. 3D bioprinted autologous bone particle scaffolds for cranioplasty promote bone regeneration with both implanted and native BMSCs. Biofabrication. 2023;15(2):025019. doi: 10.1088/1758-5090/acbe21

37. Dell A.C., Wagner G., Own J., Geibel J.P. 3D bioprinting using hydrogels: cell inks and tissue engineering applications. Pharmaceutics. 2022;14(12):2596. doi: 10.3390/pharmaceutics14122596

38. Chae S., Ha D.H., Lee H. 3D bioprinting strategy for engineering vascularized tissue models. Int. J. Bioprint. 2023;9(5):748. doi: 10.18063/ijb.748

39. Cao D., Ding J. Recent advances in regenerative biomaterials. Regen. Biomater. 2022;9:rbac098. doi: 10.1093/rb/rbac098

40. Kassim A., Alotaibi K.F. Factors that influence the adoption of digital dental technologies and dental informatics in dental practice. Int. J. Online Biomed. Eng. (iJOE). 2023;19(15):4–18. doi: 10.3991/ijoe.v19i15.43015

41. Revilla-León M., Gomez-Polo M., Vyas S., Barmak A.B., Gallucci G., Att W., Krishnamurthy V. Artificial intelligence applications in implant dentistry: A systematic review. J. Prosthet. Dent. 2023;129(2):293–300. doi: 10.1016/j.prosdent.2021.05.008

42. Panahi O., Farrokh S., Dadkhah S. Biosensors for monitoring peri-implantitis: current status and future directions. Am. J. Biomed. Sci. Res. 2025;25(1):666– 671. doi: 10.34297/AJBSR.2025.25.003366

43. Viswanathan V.K., Jain V.K., Sangani C., Botchu R., Iyengar K.P., Vaishya R. SMART (self-monitoring analysis and reporting technology) and sensor-based technology applications in trauma and orthopaedic surgery. J. Orthop. 2023;44:113–118. doi: 10.1016/j.jor.2023.09.006


Review

Views: 31

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)