Can glycine be transformed into threonine at nonketonic hyperglycinemia?
https://doi.org/10.18699/SSMJ20250620
Abstract
In the forties of the XX century, it was stated by Rose what amino acids are essential that is they are not synthesized in the organism of man and animals if they cannot be found in food. Though threonine is considered an essential amino acid, nevertheless as far back as the eighties of the last century many papers and theses which described ways of mutual transformation of threonine and glycine, catalyzed by threonine aldolase, were published, which by definition contradicts the essentiality of threonine. In particular, an increase in threonine content in the tissues of human beings who were diagnosed with nonketotic hyperglycinemia was explained by its synthesis from glycine under the influence of threoninealdolase. Some authors even ascribed to serine hydroxymethyltransferase, an enzyme which catalyzes mutual transformation of two non-essential amino acids, serine and glycine, the identity to threonine aldolase. That was the reason why the view that threonine disintegrates under the action of serine hydroxymethyltransferase appeared. Later it was determined that threoninealdolase which is very active in bacteria is not present in animals’ tissues and that serine hydroxymethyltransferase does not affect threonine in mammals; thus in mammals the aldol cleavage of threonine is impossible, to say nothing about its reversibility. After that it seems there must not be any doubt that the synthesis of threonine in animals is impossible as both enzymes which catalyze disintegration of threonine (threonine dehydratase and threonine dehydrogenase) split threonine irreversibly; the fact has been known since the discovery of the enzymes. However, recently some papers in which transformation of glycine into threonine in human beings and mammals is ascribed to threonine dehydrogenase have appeared. It should be noted that threonine dehydrogenase in humans is absent. In the present paper impossibility of transformation of glycine into threonine in human beings and mammals is stated on the biochemical level which agrees with the fact that threonine is an essential amino acid.
About the Authors
M. Yu. FleishmanRussian Federation
Marina Yu. Fleishman - doctor of medical sciences.
197183, Saint-Petersburg, Sabirovskaya st., 37
A. A. Salnikov
Russian Federation
Anton A. Salnikov
197183, Saint-Petersburg, Sabirovskaya st., 37
Y. B. Malofey
Russian Federation
Yliya B. Malofey - candidate of biological sciences.
197183, Saint-Petersburg, Sabirovskaya st., 37
References
1. Menshchikova E.B., Zenkov N.K., Lankin V.Z., Bondar I.A., Trufakin V.A. Oxidative stress: Pathological conditions and diseases. Novosibirsk: ARTA, 2008. 248 p. [In Russian].
2. DenisovaA.E., Filippenkov I.B., Stavchansky V.V., Dergunova L.V., Limborskaya S.A., Gubsky L.V. Biological Effects of Melanocortin Glyprolines. Farmateka = Pharmateca. 2018;(5):26-30. [In Russian]. doi: 10.18565/pharmateca.2018.5.26-30
3. Zhuikova S.E. Glyprolines: regulatory peptideswith an integrative action. Integrativnaya fiziologiya = Integrative Physiology. 2020;1(4):303–316. [In Russian]. doi: 10.33910/2687-1270-2020-1-4-303-316
4. Nikolaev S. V., Logvinov I. O., Kolyasnikova K. N., Antipova T.A., Kuznetsova E.A., Antipov P.I. The in vitro neuroprotective activity of analogues of Nterminus substituted glyprolines. Farmakokinetika i farmakodinamika = Pharmacokinetics and Pharmacodynamics. 2020;(2):4–10. [In Russian]. doi: 10.37489/2587-7836-2020-2-4-10
5. Ben-Sahra I., Manning B.D. mTORC1 signaling and the metabolic control of cell growth. Curr. Opin. Cell. Biol. 2017;(45):72–82. doi: 10.1016/j.ceb.2017.02.012
6. Tolstenok I.V., Fleishman M.Y., Sazonova E.N., Lebed’ko O.A., Maltseva I.M., Myasoedov N.F., Timoshin S.S. Effect of Proline-Containing Oligopeptides PGP and RGP on Proliferative and Protein-Synthesizing Activity of Cultured Pulmonary Fibroblasts under Conditions of Oxidative Stress. Bull. Exp. Biol. Med. 2016;161(1):184–186. doi: 10.1007/s10517-0163372-8
7. Fakan S., Hernandez-Verdun D. The nucleolus and the nucleolar organizer regions. Biol. Cell. 1986;56(3):189-205. doi: 10.1111/j.1768-322x.1986.tb00452.x
8. Dannikov, S.P., Kvochko A.N. Active nucleolar organizer regions in podocytes of the renal glomerulus in postnatal ontogenesis in nutria. Problemy biologii produktivnykh zhivotnykh = Problems of Biology of Productive Animals. 2019;(3):27–36. [In Russian]. doi: 10.25687/1996-6733.prodanimbiol.2019.3.27-36
9. Sharma S., Zhang X., Azhar G., Patyal P., Verma A., Kc G., Wei J.Y. Valine improves mitochondrial function and protects against oxidative stress. Biosci. Biotechnol. Biochem. 2024;88(2):168-176. doi: 10.1093/bbb/zbad169
10. Xu M., Che L., Niu L., Wang L., Li M., Jiang D., Deng H., Chen W., Jiang Z. Molecular mechanism of valine and its metabolite in improving triglyceride synthesis of porcine intestinal epithelial cells. Sci. Rep. 2023;13(1):2933. doi: 10.1038/s41598-023-30036-w
11. Ahmad I., Ahmed I., Dar N.A. Dietary valine improved growth, immunity, enzymatic activities and expression of TOR signaling cascade genes in rainbow trout, Oncorhynchus mykiss fingerlings. Sci. Rep. 2021;11(1):22089. doi: 10.1038/s41598-021-01142-4
12. Rehman S.U, Ali R., Zhang H., Zafar M.H, Wang M. Research progress in the role and mechanism of Leucine in regulating animal growth and development. Front. Physiol. 2023;14:1252089. doi: 10.3389/fphys.2023.1252089
13. Liu C., Ji L., Hu J., Zhao Y., Johnston L.J, Zhang X., Ma X. Functional amino acids and autophagy: diverse signal transduction and application. Int. J. Mol. Sci. 2021;22(21):11427. doi: 10.3390/ijms222111427
14. Zhang J., Xu W., Yang Y., Zhang L., Wang T. Leucine alters blood parameters and regulates hepatic protein synthesis via mammalian/mechanistic target of rapamycin activation in intrauterine growth-restricted piglets. J. Anim. Sci. 2022;100(4):skac109. doi: 10.1093/jas/skac109
15. Liu N., Yang Y., Si X., Jia H., Zhang Y., Jiang D., Dai Z., Wu Z. L-Proline activates mammalian target of rapamycin complex 1 and modulates redox environment in porcine trophectoderm cells. Biomolecules. 2021;11(5):742. doi: 10.3390/biom11050742
16. Savina A.A., Voronina O.A., Bogolyubova N.V., Zaitsev S.Yu. Amperometric detection of antioxidant activity of model and biological fluids. Vestnik Moskovskogo universiteta. Seriya 2: Khimiya = The Moscow University Вulletin. Series 2: Chemistry. 2. 2020;61(6):429–437. [In Russian]. doi: 10.3103/s0027131420060061
17. Luo Y., Zhang Y., Xiong Z., Chen X., Sha A., Xiao W., Peng L., Zou L., Han J., Li Q. Peptides used for heavy metal remediation: A promising approach. Int. J. Mol. Sci. 2024;25(12):6717. doi: 10.3390/ijms25126717
18. Famuwagun A.A., Alashi A.M., Gbadamosi S.O., Taiwo K.A., Oyedele D., Adebooye O.C, Aluko R.E. Effect of protease type and peptide size on the in vitro antioxidant, antihypertensive and anti-diabetic activities of eggplant leaf protein hydrolysates. Foods. 2021;10(5):1112. doi: 10.3390/foods10051112
19. Kavi Kishor P.B., Suravajhala P., Rathnagiri P., Sreenivasulu N. Intriguing role of proline in redox potential conferring high temperature stress tolerance. Front. Plant Sci. 2022;13:867531. doi: 10.3389/fpls.2022.867531
20. Korotkova Е.I., Dorozhko Е.V., Bukel M.V., Voronova O.A., Dyakonova Е.V., Petrova E.V., Shcherbakova A.S. Investigation of antioxidant properties of some amino acids by voltammetry. Sibirskiy meditsinskiy zhurnal (Tomsk) = Siberian Medical Journal (Tomsk). 2011;26(2-2);62-65.[In Russian].
21. Zenkov N.K., Kolpakov A.R., Menshchikova E.B. The Keap1/Nrf2/ARE redox-sensitive system as a pharmacological target in cardiovascular pathology. Sibirskij nauchnyj medicinskij zhurnal = Siberian Scientific Medical Journal. 2015;35(5):5–25. [In Russian].
22. Summart R., Imsoonthornruksa S., Yongsawatdigul J., Ketudat-Cairns M., Udomsil N. Characterization and molecular docking of tetrapeptides with cellular antioxidant and ACE inhibitor properties from cricket (Acheta domesticus) protein hydrolysate. Heliyon. 2024;10(15):e35156. doi: 10.1016/j.heliyon.2024.e35156
23. Mitchell W., Ng E.A., Tamucci J.D., Boyd K.J, Sathappa M., Coscia A., Pan M., Han X., Eddy N.A., May E.R., Szeto H.H., Alder N.N. The mitochondria-targeted peptide SS-31 binds lipid bilayers and modulates surface electrostatics as a key component of its mechanism of action. J. Biol. Chem. 2020;295(21):7452–7469. doi: 10.1074/jbc.RA119.012094
24. Fleishman M.Yu., Salnikov A.A., Kolesnikova A.A., MalofeyYu.B. The level of apoptosis in the cellsof the neocortex and hippocampus of white rats after mild traumatic brain injury with the introduction of glyproline. Sibirskij nauchnyj medicinskij zhurnal = Siberian Scientific Medical Journal. 2024;44(6):179–185. [In Russian]. doi:10.18699/SSMJ20240618
25. Kolesnikova A.A., Fleishman M.Yu., MalofeyYu.B., Tolstenok I.V., Duzenko N.V., Salnikov A.A. Comparison of the effects of three glyprolines after five days of intraperitoneal administration. Sibirskij nauchnyj medicinskij zhurnal = Siberian Scientific Medical Journal. 2024;44(6):105–113. [In Russian]. doi: 10.18699/SSMJ20240610
26. Li Y., Xiong Z., Yan W., Gao E., Cheng H., Wu G., Liu Y., Zhang L., Li C., Wang S., Fan M., Zhao H., Zhang F., Tao L. Branched chain amino acids exacerbate myocardial ischemia/reperfusion vulnerability via enhancing GCN2/ATF6/PPAR-α pathway-dependent fatty acid oxidation. Theranostics. 2020;10(12):56235640. doi: 10.7150/thno.44836
27. Wu S., Liu X., Cheng L., Wang D., Qin G., Zhang X., Zhen Y., Wang T., Sun Z. Protective mechanism of leucine and isoleucine against H2O2-induced oxidative damage in bovine mammary epithelial cells. Oxid. Med. Cell. Longev. 2022;(2022):4013575. doi: 10.1155/2022/4013575
Review
JATS XML






























