Preview

Сибирский научный медицинский журнал

Advanced search

Bacterial cellulose in neurosurgery: prospects for dural mater repair

https://doi.org/10.18699/SSMJ20250613

Abstract

The dura mater plays a key role in protecting the central nervous system by providing mechanical and barrier functions. Various injuries, surgical interventions, and pathological conditions may require its repair or replacement. The use of synthetic implants or autografts often carries risks, including infections, allergic reactions, and rejection. In recent years, bacterial cellulose has gained attention as a biomaterial with unique properties that could significantly improve surgical outcomes. This review explores the potential of bacterial cellulose as a dura mater substitute and analyzes its advantages. A literature search was conducted in PubMed and Google Scholar (2014–2024), focusing on key studies of biocompatibility and neurosurgical applications. Keywords included bacterial nanocellulose, properties of bacterial nanocellulose, dura mater defects, biocompatibility. Out of 127 sources (in vitro, in vivo, and clinical studies), 32 articles were selected based on novelty, depth of research (mechanical properties, immune response, tissue regeneration), and relevance to dura mater repair. Priority was given to publications from the last decade (2014–2024), experimental in vivo models (rabbits, rats), and reviews on neurosurgical applications. A literature review has shown that bacterial cellulose is a promising biomaterial with unique properties, including high biocompatibility, hypoallergenicity, and the ability to modulate the immune response toward an anti-inflammatory phenotype. A key factor in its efficacy is thorough endotoxin removal, which minimizes inflammatory reactions. Bacterial cellulose demonstrates particular potential in experimental and clinical neurosurgery as a potential medical device for dura mater defect repair.

About the Authors

T. M. Terekhova
Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan of Minzdrav of Russia
Russian Federation

Tatyana M. Terekhova

630091, Novosibirsk, Frunze st., 17



P. M. Larionov
Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan of Minzdrav of Russia
Russian Federation

Petr M. Larionov - doctor of medical sciences, professor.

630091, Novosibirsk, Frunze st., 17



V. I. Larkin
Omsk State Medical Academy of Minzdrav of Russia
Russian Federation

Valery I. Larkin - doctor of medical sciences.

644099, Omsk, Lenina st., 12



A. E. Simonovich
Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan of Minzdrav of Russia
Russian Federation

Alexandr E. Simonovich - doctor of medical sciences, professor.

630091, Novosibirsk, Frunze st., 17



A. S. Shershever
Ural State Medical University of Minzdrav of Russia
Russian Federation

Alexandr S. Shershever - doctor of medical sciences, professor.

620028, Yekaterinburg, Repina st., 3



V. V. Stupak
Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan of Minzdrav of Russia
Russian Federation

Vyacheslav V. Stupak - doctor of medical sciences, professor.

630091, Novosibirsk, Frunze st., 17



References

1. Larionov P.M., Pogorelovа N.A., Kharchenko A.V., Tereshchenko V.P., Stupak E.V., Stupak V.V., Samokhin A.G., Korel A.V., Kirilova I.A. Evaluation of the biocompatibility of bacterial cellulose gel films using enzymatic and detergent cleaning methods in a rat experiment. Politravma = Polytrauma. 2024;(1):67–74. doi: 10.24412/1819-1495-2024-1-67-74

2. Lipovka A., Kharchenko A., Dubovoy A., Filipenko M., Stupak V., Mayorov A., Fomenko V., Geydt P., Parshin D. The effect of adding modified chitosan on the strength properties of bacterial cellulose for clinical applications. Polymers (Basel). 2021;13(12):1995. doi: 10.3390/polym13121995

3. Pogorelova N., Parshin D., Lipovka A., Besov A., Digel I., Larionov P. Structural and viscoelastic properties of bacterial cellulose composites: implications for prosthetics. Polymers (Basel). 2024;16(22):3200. doi: 10.3390/polym16223200

4. Park M.A., Lee S.G., Choi K.H., Cho B.U. Effects of surface coating of cellulose II-based MFC on paper properties. Journal of the Korea Technical Association of the Pulp and Paper Industry. 2019;51(1):28–36. doi: 10.7584/JKTAPPI.2019.02.51.1.28

5. Abba M., Abdullahi M., Nor M.H.M., Chong C.S., Ibrahim Z. Isolation and characterisation of locally isolated Gluconacetobacter xylinus BCZM sp. with nanocellulose producing potentials. IET Nanobiotechnology. 2017;12(1):52–56. doi: 10.1049/ietnbt.2017.0103

6. Swingler S., Gupta A., Gibson H., Kowalczuk M., Heaselgrave W., Radecka I. Recent advances and applications of bacterial cellulose in biomedicine. Polymers (Basel). 2021;13(3):412. doi: 10.3390/polym13030412

7. He W., Wu J., Xu J., Mosselhy D.A., Zheng Y., Yang S. Bacterial cellulose: functional modification and wound healing applications. Adv. Wound Care (New Rochelle). 2021;10(11):623–640. doi: 10.1089/wound.2020.1219

8. Lahiri D., Nag M., Dutta B., Dey A., Sarkar T., Pati S., Edinur H.A., Abdul Kari Z., Mohd Noor N.H., Ray R.R. Bacterial cellulose: production, characterization, and application as antimicrobial agent. Int. J. Mol. Sci. 2021;22(23):12984. doi: 10.3390/ijms222312984

9. Ryngajłło M., Jędrzejczak-Krzepkowska M., Kubiak K., Ludwicka K., Bielecki S. Towards control of cellulose biosynthesis by komagataeibacter using systems-level and strain engineering strategies: current progress and perspectives. Appl. Microbiol. Biotechnol. 2020;104(15):6565–585. doi: 10.1007/s00253-020-10671-3

10. Krasteva P.V., Bernal-Bayard J., Travier L., Martin F.A., Kaminski P.A., Karimova G., Fronzes R., Ghigo J.M. Insights into the structure and assembly of a bacterial cellulose secretion system. Nat. Commun. 2017;8:1–10. doi: 10.1038/s41467-017-01523-2

11. Römling U., Galperin M.Y. Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol. 2015;23(9):545–557. doi: 10.1016/j.tim.2015.05.005

12. Pandey A., Singh M.K., Singh A. Bacterial Cellulose: A smart biomaterial for biomedical applications. J. Mater. Res. 2024;39:2–18. doi: 10.1557/s43578-023-01116-4

13. Portela R., Leal C.R., Almeida P.L., Sobral R.G. Bacterial cellulose: a versatile biopolymer for wound dressing applications. Microb. Biotechnol. 2019;12(4):586–610. doi: 10.1111/1751-7915.13392

14. Murray P.J., Allen J.E., Biswas S.K., Fisher E.A., Gilroy D.W., Goerdt S., Gordon S., Hamilton J.A., Ivashkiv L.B., Lawrence T., … Wynn T.A. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14–20. doi: 10.1016/j.immuni.2014.06.008

15. Popa L., Ghica M. V., Tudoroiu E.-E., Ionescu D.G., Dinu-Pîrvu C.E. Bacterial cellulose – a remarkable polymer as a source for biomaterials tailoring. Materials (Basel). 2022;15(3):1054. doi: 10.3390/ma15031054

16. Dang R., Xu J., Zhang B., Zhao S., Dang Y. Preparation of bacterial cellulose-based antimicrobial materials and their applications in wound dressing: a review. Materials & Design. 2025;253:113820. doi: 10.1016/j.matdes.2025.113820

17. Nathan C., Ding A. Nonresoling inflammation. Cell. 2010;140(6):871–882. doi: 10.1016/j.cell.2010.02.029

18. Dutta S.D., Ganguly K., Patil T.V., Randhawa A., Lim K.T. Unraveling the potential of 3D bioprinted immunomodulatory materials for regulating macrophage polarization: State-of-the-art in bone and associated tissue regeneration. Bioact. Mater. 2023;28:284–310. doi: 10.1016/j.bioactmat.2023.05.014

19. Mondadori C., Chandrakar A., Lopa S., Wieringa P., Talò G., Perego S., Lombardi G., Colombini A., Moretti M., Moroni L. Assessing the response of human primary macrophages to defined fibrous architectures fabricated by melt electrowriting. Bioactive Materials. 2023;21:209–222. doi: 10.1016/j.bioactmat.2022.07.014

20. Ajdary R., Abidnejad R., Lehtonen J., Kuula J., Raussi-Lehto E., Kankuri E., Tardy B., Rojas O.J. Bacterial nanocellulose enables auxetic supporting implants. Carbohydrate Polymers. 2022;284:119198. doi: 10.1016/j.carbpol.2022.119198

21. Čolić M., Tomić S., Bekić M. Immunological aspects of nanocellulose. Immunol. Lett. 2020;222:80–89. doi: 10.1016/j.imlet.2020.04.004

22. Cherng J.H., Chou S.C., Chen C.L., Wang Y.W., Chang S.J., Fan G.Y., Leung F.S., Meng E. Bacterial cellulose as a potential bio-scaffold for effective re-epithelialization therapy. Pharmaceutics. 2021;13(10):1592. doi: 10.3390/pharmaceutics13101592

23. Bobadilla A.V.P., Arévalo J., Sarró E., Byrne H.M., Maini P.K., Carraro T., Balocco S., Meseguer A., Alarcón T. In vitro cell migration quantification method for scratch assays. J. R. Soc. Interface. 2019;16(151):20180709. doi: 10.1098/rsif.2018.0709

24. Liu H., Hu Y., Wu X., Hu R., Liu Y. Optimization of surface-engineered micropatterns on bacterial cellulose for guided scar-free skin wound healing. Biomolecules. 2023;13(5):793. doi: 10.3390/biom13050793

25. Chen Y., Xi T., Zheng Y., Guo T., Hou J., Wan Y., Gao C. In vitro cytotoxicity of bacterial cellulose scaffolds used for tissue-engineered bone. Journal of Bioactive and Compatible Polymers. 2009;24(2):137–145. doi: 10.1177/0883911509102712

26. Girard V.D., Chaussé J., Borduas M., Dubuc É., Iorio-Morin C., Brisebois S., Vermette P. In vitro and in vivo biocompatibility of bacterial cellulose. J. Biomed. Mater. Res. B. Appl. Biomater. 2024;112(10):e35488. doi: 10.1002/jbm.b.35488

27. Kim G.D., Yang H., Park H.R., Park C.S., Park Y.S., Lee S.E. Evaluation of immunoreactivity of in vitro and in vivo models against bacterial synthesized cellulose to be used as a prosthetic biomaterial. BioChip J. 2013;7:201–209. doi: 10.1007/s13206-013-7302-9

28. Xu C., Ma X., Chen S., Tao M., Yuan L., Jing Y. Bacterial cellulose membranes used as artificial substitutes for dural defection in rabbits. Int. J. Mol. Sci. 2014;15(6):10855–10867. doi: 10.3390/ijms150610855

29. Jackson N., Muthuswamy J. Artificial dural sealant that allows multiple penetrations of implantable brain probes. J. Neurosci. Methods. 2008;171(1):147–152. doi: 10.1016/j.jneumeth.2008.02.018

30. Khurana D., Suresh A., Nayak R., Shetty M., Sarda R.K., Knowles J.C., Kim H.W., Singh R.K., Singh B.N. Biosubstitutes for dural closure: Unveiling research, application, and future prospects of dural mater alternatives. J. Tissue Eng. 2024;15:20417314241228118. doi: 10.1177/20417314241228118

31. Chen X., Ma X., Chen S., Tao M., Yuan L., Jing Y. Bacterial cellulose membranes used as artificial substitutes for dural defection in rabbits. Int. J. Mol. Sci. 2014;15(6):10855–10867. doi: 10.3390/ijms150610855

32. Yao J., Ma X., Xu C., Tian H.L., Chen S.W. Repair of dural defects with electrospun bacterial cellulose membranes in a rabbit experimental model. Mater. Sci. Eng. C. Mater. Biol. Appl: C. 2020;117:111246. doi: 10.1016/j.msec.2020.111246


Review

Views: 19

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)