Factors influencing the development of intestinal microbiota of infants
https://doi.org/10.18699/SSMJ20250610
Abstract
The gut microbiota is a complex biodiversity of microorganisms, including many different species, that colonize the human intestinal tract. The development and establishment of the gut microbiota in infants is subject to change over time as a result of multiple factors. As previously believed, the colonization of the infant’s intestine with microorganisms begins immediately after birth, however, a growing body of evidence suggests that the intrauterine environment is not sterile, and the transfer of microbiota from mother to fetus occurs during pregnancy. Many prenatal factors can modulate the composition and development of the infant’s intestinal microbiota, such as the characteristics of the mother’s diet, obesity, smoking, and the use of antibacterial drugs during gestation. The method of delivery and the type of feeding are fundamental factors for the subsequent development and establishment of the infant’s microbiota at birth and the postpartum period, respectively. The objective of this review is to identify and analyze the most significant modifiable factors (maternal nutrition, mode of delivery, feeding type) that determine the development of the infant’s intestinal microbiota based on a summary of literature data. This review is necessary to create a theoretical basis that can be used by physicians (neonatologists, pediatricians) to develop practical measures to optimize and correct the microbiocenosis, and prevent diseases in children associated with its disruption (allergy, obesity, diabetes mellitus, necrosing ulcerative colitis).
About the Authors
M. A. SabanaevRussian Federation
Mikhail A. Sabanaev
163069, Arkhangelsk, Troitsky ave., 51
T. A. Bazhukova
Russian Federation
Tatyana A. Bazhukova - doctor of medical science, professor.
163069, Arkhangelsk, Troitsky ave., 51
N. N. Kukalevskaya
Russian Federation
Natalia N. Kukalevskaya
163069, Arkhangelsk, Troitsky ave., 51
N. V. Davidovich
Russian Federation
Nataliya V. Davidovich - candidate of medical sciences.
163069, Arkhangelsk, Troitsky ave., 51
O. G. Malygina
Russian Federation
Olga G. Malygina - candidate of medical sciences.
163069, Arkhangelsk, Troitsky ave., 51
References
1. Maciel-Fiuza M.F., Muller G.C., Campos D.M.S., Peruzzo J., Bonamigo R.R., Veit T. Role of gut microbiota in infectious and inflammatory diseases. Front. Microbiol. 2023;14:1098386. doi: 10.3389/fmicb.2023.1098386
2. Vandenplas Y., Carnielli V.P., Ksiazyk J., Luna M.S., Migacheva N., Mosselmans J.M., Picaud J.C., Possner M., Singhal A., Wabitsch M. Factors affecting early-life intestinal microbiota development. Nutrition. 2020;78:110812. doi: 10.1016/j.nut.2020.110812
3. Banchi P., Colitti B., Opsomer G., Rota A., van Soom A. The dogma of the sterile uterus revisited: does microbial seeding occur during fetal life in humans and animals? Reproduction. 2023;167(1):e230078. doi: 10.1530/REP-23-0078
4. Blaser M.J., Devkota S., McCoy K.D., Relman D.A., Yassour M., Young V.B. Lessons learned from the prenatal microbiome controversy. Microbiome. 2021;9(1):8. doi: 10.1186/s40168-020-00946-2
5. Kaibysheva V.O., Zharova M.E., Filimendikova K.Yu., Nikonov E.L. Human microbiome: agerelated changes and functions. Dokazatel’naya gastroenterologiya = Russian Journal of Evidence-Based Gastroenterology. 2020;9(2):42–55.[In Russian.]. doi: 10.17116/dokgastro2020902142
6. Kaczynska A., Klosinska M., Chmiel P., Janeczek K., Emeryk A. The crosstalk between the gut microbiota composition and the clinical course of allergic rhinitis: the use of probiotics, prebiotics and bacterial lysates in the treatment of allergic rhinitis. Nutrients. 2022;14(20):4328. doi: 10.3390/nu14204328
7. Hou J., Xiang J., Li D., Liu X., Pan W. Gut microbial response to host metabolic phenotypes. Front. Nutr. 2022;9:1019430. doi: 10.3389/fnut.2022.1019430
8. Lundgren S.N., Madan J.C., Emond J.A., Morrison H.G., Christensen B.C., Karagas M.R., Hoen A.G. Maternal diet during pregnancy is related with the infant stool microbiome in a delivery mode-dependent manner. Microbiome. 2018;6(1):109. doi: 10.1186/s40168-018-0490-8
9. Lityaeva L.A., Kovaleva O.V. Role of food and microecological status of pregnant women in the programming of a healthy child. Detskie infektsii = Children Infections. 2017;16(2):40–44. [In Russian]. doi: 10.22627/2072-8107-2017-16-2-40-44
10. Suarez-Martinez C., Santaella-Pascual M., Yague-Guirao G., Martínez-Gracia C. Infant gut microbiota colonization: influence of prenatal and postnatal factors, focusing on diet. Front. Microbiol. 2023;14:1236254. doi: 10.3389/fmicb.2023.1236254
11. Tunay R.T., Tas T.K. Verticle transmission of unique bacterial strains from mother to infant via consuming natural kefir. International Dairy Journal. 2022;126:105251. doi: 10.1016/j.idairyj.2021.105251
12. Tang M., Marroquin E. The role of the gut microbiome in the intergenerational transmission of the obesity phenotype: A narrative review. Front. Med. (Lausanne). 2022;9:1057424. doi: 10.3389/fmed.2022.1057424
13. Robinson A., Fiechtner L., Roche B., Ajami N.J., Petrosino J.F., Camargo C.A. Jr., Taveras E.M., Hasegawa K. Association of maternal gestational weight gain with the infant fecal microbiota. J. Pediatr. Gastroenterol. Nutr. 2017;65(5):509–515. doi: 10.1097/MPG.0000000000001566
14. Raspini B., Porri D., de Giuseppe R., Chieppa M., Liso M., Cerbo R.M., Civardi E., Garofoli F., Monti M.C., Vacca M., De Angelis M., Cena H. Prenatal and postnatal determinants in shaping offspring’s microbiome in the first 1000 days: study protocol and preliminary results at one month of life. Ital. J. Pediatr. 2020;46(1):45. doi: 10.1186/s13052-020-0794-8
15. Singh S.B., Madan J., Coker M., Hoen A., Baker E.R., Karagas M.R., Mueller N.T. Does birth mode modify associations of maternal pre-pregnancy BMI and gestational weight gain with the infant gut microbiome? Int. J. Obes. (Lond.). 2020;44(1):23–32. doi: 10.1038/s41366-018-0273-0
16. Gilley S.P., Ruebel M.L., Sims C., Zhong Y., Turner D., Lan R.S., Pack L.M., Piccolo B.D., Chintapalli S.V., Abraham A., … Shankar K. Associations between maternal obesity and offspring gut microbiome in the first year of life. Ped obesity. 2022;17(9):e12921. doi: 10.1111/ijpo.12921
17. Stanislawski M.A., Dabelea D., Wagner B.D., Sontag M.K., Lozupone C.A., Eggesbo M. Pre-pregnancy weight, gestational weight gain, and the gut microbiota of mothers and their infants. Microbiome. 2017;5(1):113. doi: 10.1186/s40168-017-0332-0
18. Zhang C., Li L., Jin B., Xu X., Zuo X., Li Y., Li Z. The effects of delivery mode on the gut microbiota and health: state of art. Front. Microbiol. 2021;12:724449. doi: 10.3389/fmicb.2021.724449
19. Stewart C.J., Ajami N.J., O’Brien J.L., Hutchinson D.S., Smith D.P., Wong M.C., Ross M.C., Lloyd R.E., Doddapaneni H., Metcalf G.A., … Petrosino J.F. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018;562(7728):583–588. doi: 10.1038/s41586-018-0617-x
20. Reddel S., Pascucci G.R., Foligno S., Del Chierico F., Vernocchi P., Marzullo A., Pattumelli M.G., Palma P., Salvatori G., Putignani L. A parallel tracking of salivary and gut microbiota profiles can reveal maturation and interplay of early life microbial communities in healthy infants. Microorganisms. 2022;10(2):468. doi: 10.3390/microorganisms10020468
21. Malygina O.G., Bazhukova T.A. Large bowel microbiocentosis in immature infants with very low and extremely low body weight in the first year of life. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology. 2018;95(5):60–66. [In Russian]. doi: 10.36233/0372-9311-2018-5-60-66
22. Priputnevich T.V., Isaeva E.L., Murav’eva V.V., Mesjan M.K., Zubkov V.V., Nikolaeva A.V., Bembeeva B.O., Timofeeva L.A., Kozlova A.A., Makarov V.V., Judin S.M. Development of the gut microbiota of term and late preterm newborn infants. Neonatologiya: novosti, mneniya, obuchenie = Neonatology: News, Opinions, Training. 2023;11(1):42–56. [In Russian] doi: 10.33029/2308-2402-2023-11-1-42-56
23. Program for optimizing feeding of children in the first year of life in the Russian Federation: methodological recommendations. Moscow: Federal State Autonomous Institution “National Medical Research Center for Children’s Health”, 2019. 112 p. [In Russian].
24. Lyons K.E., Ryan C.A., Dempsey E.M., Ross R.P., Stanton C. Breast milk, a source of beneficial microbes and associated benefits for infant health. Nutrients. 2020;12(4):1039. doi: 10.3390/nu12041039
25. Yang S., Cai J., Su Q., Li Q., Meng X. Human milk oligosaccharides combine with Bifidobacterium longum to form the “golden shield” of the infant intestine: metabolic strategies, health effects, and mechanisms of action. Gut Microbes. 2024;16(1):2430418. doi: 10.1080/19490976.2024.2430418
26. Ackerman D.L., Craft K.M., Doster R.S., Weitkamp J.H., Aronoff D.M., Gaddy J.A., Townsend S.D. Antimicrobial and antibiofilm activity of human milk oligosaccharides against Streptococcus agalactiae, Staphylococcus aureus, and Acinetobacter baumannii. ACS. Infect. Dis. 2018;4(3):315–324. doi: 10.1021/acsinfecdis.7b00183
27. Fabiano V., Indrio F., Verduci E., Calcaterra V., Pop T.L., Mari A., Zuccotti G.V., Cullu Cokugras F., Pettoello-Mantovani M., Goulet O. Term infant formulas influencing gut microbiota: an overview. Nutrients. 2021;13(12):4200. doi: 10.3390/nu13124200
28. Differding M.K., Benjamin-Neelon S.E., Hoyo C., Ostbye T., Mueller N.T. Timing of complementary feeding is associated with gut microbiota diversity and composition and short chain fatty acid concentrations over the first year of life. BMC Microbiol. 2020;20(1):56. doi: 10.1186/s12866-020-01723-9
29. Laursen M.F., Bahl M.I., Michaelsen K.F., Licht T.R. First foods and gut microbes. Front. Microbiol. 2017;8:356. doi: 10.3389/fmicb.2017.00356
30. Belyaeva I.A., Namazova-Baranova L.S., Bombardirova E.P., Shukenbayeva R.A., Turti T.V. Supplemental feeding implementation: window of opportunities for the intestinal microbiota development and immune responses modulation. Voprosy sovremennoy pediatrii = Current Pediatrics. 2023;22(6):506–512. [In Russian]. doi: 10.15690/vsp.v22i6.2663
31. Sanyang B., Dabrowska M.B., Amenyogbe N., Camara B., Beloum N., Jammeh M., Bojang D., Goodall J., Mohammed N., Sesay A.K., Roca A., de Silva T.I. Effect of intrapartum azithromycin on early childhood gut mycobiota development: post hoc analysis of a double-blind randomized trial. Nat. Commun. 2025;16(1):7356. doi: 10.1038/s41467-025-62142-w
32. Sanyang B., de Silva T.I., Camara B., Beloum N., Kanteh A., Manneh J., de Steenhuijsen Piters W.A.A., Bogaert D., Sesay A.K., Roca A. Effect of intrapartum azithromycin on gut microbiota development in early childhood: A post hoc analysis of a double-blind randomized trial. iScience. 2024;27(9):110626. doi: 10.1016/j.isci.2024.110626
33. Sinha T., Prins J.R., Fernández-Pato A., Kruk M., Dierikx T., de Meij T., de Boer M., de Boer J.F., Scherjon S., Kurilshikov A., Zhernakova A. Maternal antibiotic prophylaxis during cesarean section has a limited impact on the infant gut microbiome. Cell Host Microbe. 2024;32(8):1444–1454.e6. doi: 10.1016/j.chom.2024.07.010
34. Gu H., Tao E., Fan Y., Long G., Jia X., Yuan T., Chen L., Shu X., Zheng W., Jiang M. Effect of β-lactam antibiotics on the gut microbiota of term neonates. Ann. Clin. Microbiol. Antimicrob. 2024;23(1):69. doi: 10.1186/s12941-024-00730-2
35. Iqbal F., Shenoy P.A., Lewis L.E.S., Siva N., Purkayastha J., Eshwara V.K. Influence of perinatal antibiotic on neonatal gut microbiota: a prospective cohort study. BMC Pediatr. 2025;25(1):560. doi: 10.1186/s12887-025-05907-y
36. Ojeda A., Akinsuyi O., McKinley K.L., Xhumari J., Triplett E.W., Neu J., Roesch L.F.W. Increased antibiotic resistance in preterm neonates under early antibiotic use. mSphere. 2024;9(10):e0028624. doi: 10.1128/msphere.00286-24
37. Leo S., Cetiner O.F., Pittet L.F., Messina N.L., Jakob W., Falquet L., Curtis N., Zimmermann P. Metagenomics analysis of the neonatal intestinal resistome. Front. Pediatr. 2023;11:1169651. doi: 10.3389/fped.2023.1169651
38. Jeong S. Factors influencing development of the infant microbiota: from prenatal period to early infancy. Clin. Exp. Pediatr. 2022;65(9):439–447. doi: 10.3345/cep.2021.00955
39. Peng Y., Tun H.M., Ng S.C., Wai H.K., Zhang X., Parks J., Field C.J., Mandhane P., Moraes T.J., Simons E., … Kozyrskyj A.L. Maternal smoking during pregnancy increases the risk of gut microbiome-associated childhood overweight and obesity. Gut Microbes. 2024;16(1):2323234. doi: 10.1080/19490976.2024.2323234
40. Scheible K., Beblavy R., Sohn M.B., Qui X., Gill A.L., Narvaez-Miranda J., Brunner J., Miller R.K., Barrett E.S., O’Connor T.G., Gill S.R. Affective symptoms in pregnancy are associated with the vaginal microbiome. J. Affect. Disord. 2025;368:410–419. doi: 10.1016/j.jad.2024.09.108
Review
JATS XML






























