Роль нейротрофического фактора мозга в патогенезе бронхиальной астмы у пожилых
https://doi.org/10.18699/SSMJ20250607
Аннотация
Нейротрофический фактор мозга (brainderived neurotrophic factor, BDNF) широко экспрессируется в нервной, иммунной, бронхолегочной системах и вовлечен в процессы клеточного старения, что обусловливает интерес к изучению его роли в патогенезе развития бронхиальной астмы (БА) у пожилых (поздняя БА). Активация BDNF может происходить не только посредством его связи с клеточными рецепторами (высокоаффинный протеинтирозинкиназный рецептор TrkB и нетирозинкиназный низкоаффинный рецептор p75NTR), но и рецепторнезависимым путем, через систему Keap1/Nrf2. Оба сигнальных пути нарушаются при БА и старении. Кроме того, описаны Keap1независимые пути активации Nrf2, которые также связаны с активностью BDNF и участвуют в процессах старения и патогенезе БА. Стареющие клетки приобретают SASPфенотип, который участвует в прогрессировании иммуностарения, иммуновоспаления, старения легких и способен опосредовать развитие БА у пожилых людей. С другой стороны, стареющие клетки способны экспрессировать BDNF и TrkB, которые поддерживают их жизнеспособность через SASP. Тот факт, что ингибиторы Trk способны снижать жизнеспособность стареющих клеток в эксперименте, позволяет взглянуть поновому на роль TrkB/BDNF в качестве мишени при лечении БА у пожилых. Описана роль Nrf2 в нивелировании клеточного старения и связанного с ним SASP, что может также представлять интерес с позиций изучения его роли в патогенезе БА. В настоящем обзоре обобщена современная информация относительно BDNF, его рецепторного и рецепторнезависимого действия, а также роли в иммуновоспалительных процессах, старении и патогенезе развития БА у пожилых.
Ключевые слова
Об авторах
О. Ю. КытиковаРоссия
Кытикова Оксана Юрьевна - д.м.н.
690105, Владивосток, ул. Русская, 73-г
М. В. Антонюк
Россия
Антонюк Марина Владимировна - д.м.н., проф.
690105, Владивосток, ул. Русская, 73-г
Т. П. Новгородцева
Россия
Новгородцева Татьяна Павловна - д.б.н, проф.
690105, Владивосток, ул. Русская, 73-г
Т. А. Гвозденко
Россия
Гвозденко Татьяна Александровна - д.м.н., проф. РАН.
690105, Владивосток, ул. Русская, 73-г
А. А. Уксуменко
Россия
Уксуменко Анна Анатольевна - к.м.н.
690105, Владивосток, ул. Русская, 73-г
К. А. Сюникова
Россия
Сюникова Ксения Анатольевна
690105, Владивосток, ул. Русская, 73-г
Список литературы
1. Cheng X., Yang Y., Schwebel D.C., Liu Z., Li L., Cheng P., Ning P., Hu G. Population ageing and mortality during 1990–2017: A global decomposition analysis. PloS. Med. 2020;17(6):e1003138. doi: 10.1371/journal.pmed.1003138
2. Valverde-Monge M., Cárdenas R., García-Moguel I., Rosado A., Gandolfo-Cano M., Echarren T.R., Moro-Moro M.D.M., Reaño Martos M.D.M., PinedaPineda R., Arroba C.M., Domínguez-Ortega J.; AIRE Group. Safety and efficacy of benralizumab in elderly subjects with severe asthma .J. Asthma. 2024;61(3): 232–237. doi: 10.1080/02770903.2023.2263078
3. Birch J., Gil J. Senescence and the SASP: many therapeutic avenues. Genes Dev. 2020;34(2324):1565–1576. doi: 10.1101/gad.343129.120
4. Wang Z.N., Su R.N., Yang B.Y., Yang K.X., Yang L.F., Yan Y., Chen Z.G. Potential role of cellular senescence in asthma. Front. Cell. Dev. Biol. 2020;8:59. doi: 10.3389/fcell.2020.00059
5. Soma T., Nagata M. Immunosenescence, Inflammaging, and Lung Senescence in Asthma in the Elderly. Biomolecules. 2022;12(10):1456. doi: 10.3390/biom1210145
6. Wang W., Zhou K., Wang L., Qin Q., Liu H., Qin L., Yang M., Yuan L., Liu C. Aging in chronic lung disease: Will anti-aging therapy be the key to the cure? Eur. J. Pharmacol. 2024;980:176846. doi: 10.1016/j.ejphar.2024.176846
7. Anerillas C., Herman A.B., Munk R., Garrido A., Lam K.G., Payea M.J., Rossi M., Tsitsipatis D., Martindale J.L., Piao Y., … Gorospe M. A BDNF-TrkB autocrine loop enhances senescent cell viability. Nat. Commun. 2022;13(1):6228. doi: 10.1038/s41467-02233709-8
8. McPhee G.M., Downey L.A., Stough C. Neurotrophins as a reliable biomarker for brain function, structure and cognition: A systematic review and metaanalysis. Neurobiol. Learn. Mem. 2020;175:107298. doi: 10.1016/j.nlm.2020.107298
9. Faraji J.S., Metz G.A. Harnessing BDNF signaling to promote resilience in aging. Aging Dis. 2024;16(4):1813–1841. doi: 10.14336/AD.2024.0961
10. Tamayo J.M., Osman H.C., Schwartzer J.J., Ashwood P. The influence of asthma on neuroinflammation and neurodevelopment: From epidemiology to basic models. Brain Behav. Immun. 2024;116:218–228. doi: 10.1016/j.bbi.2023.12.003
11. Kabata H., Artis D. Neuro-immune crosstalk and allergic inflammation. J. Clin. Invest. 2019;129(4):1475–1482. doi: 10.1172/JCI124609
12. Nagashima H., Mahlakõiv T., Shih H.Y., Davis F.P., Meylan F., Huang Y., Harrison O.J., Yao C., Mikami Y., Urban J.F. Jr., … O’Shea J.J. Neuropeptide CGRP limits group 2 innate lymphoid cell responses and constrains type 2 inflammation. Immunity. 2019;51(4):682–695.e6. doi: 10.1016/j.immuni.2019.06.009
13. Tamari M., Del Bel K.L., Ver Heul A.M., Zamidar L., Orimo K., Hoshi M., Trier A.M., Yano H., Yang T.L., Biggs C.M., … Kim B.S. Sensory neurons promote immune homeostasis in the lung. Cell. 2024;187(1):44–61.e17. doi: 10.1016/j.cell.2023.11.027
14. Wang N., Wang J., Zhang Y., Hu S., Zhang T., Wu Y., Sun X., Zhang T., Yang S., He L. Substance Pinduced lung inflammation in mice is mast cell dependen. Clin. Exp. Allergy. 2022;52(1):46–58. doi: 10.1111/cea.13902
15. Wanner S.P., Garami A., Pakai E., Oliveira D.L., Gavva N.R., Coimbra C.C., Romanovsky A.A. Aging reverses the role of the transient receptor potential vanilloid-1 channel in systemic inflammation from anti-inflammatory to proinflammatory. Cell Cycle. 2012;11(2):343–349. doi: 10.4161/cc.11.2.18772
16. Paris A.J., Hayer K.E., Oved J.H., Avgousti D.C., Toulmin S.A., Zepp J.A., Zacharias W.J., Katzen J.B., Basil M.C., Kremp M.M., … Worthen G.S. STAT3-BDNF-TrkB signalling promotes alveolar epithelial regeneration after lung injury. Nat. Cell. Biol. 2020;22(10):1197–1210. doi: 10.1038/s41556-020-0569-x
17. Freeman M.R., Sathish V., Manlove L., Wang S., Britt R.D. Jr., Thompson M.A., Pabelick C.M., Prakash Y.S. Brain-derived neurotrophic factor and airway fibrosis in asthma. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2017;313(2):L360–L370. doi: 10.1152/ajplung.00580.2016
18. Kojima M., Ishii C., Sano Y., Mizui T., Furuichi T. Journey of brain-derived neurotrophic factor: from intracellular trafficking to secretion. Cell. Tissue. Res. 2020;382(1):125–134. doi: 10.1007/s00441-02003274-x
19. Fath J., Brouillard F., Cabaye A., Claverie D., Nuss P., Poillerat V., Chwetzoff S., Bouceba T., Bouvier E., Salameh M., … Becker C. A receptor-independent signaling pathway for BDNF. bioRxiv. 2022. doi: 10.1101/2022.08.23.504973
20. Yu C., Xiao J.H. The Keap1-Nrf2 system: a mediator between oxidative stress and aging. Oxid. Med. Cell. Longev. 2021;2021:6635460. doi: 10.1155/2021/6635460
21. Kaur M., Aran K.R. Unraveling the role of Nrf2 in dopaminergic neurons: a review of oxidative stress and mitochondrial dysfunction in Parkinson’s disease. Metab. Brain. Dis. 2025;40(2):123. doi: 10.1007/s11011-025-01552-7
22. Hiebert P. The Nrf2 transcription factor: A multifaceted regulator of the extracellular matrix. Matrix. Biol. Plus. 2021;10:100057. doi: 10.1016/j.mbplus.2021.100057
23. Zinovkin R.A., Kondratenko N.D., Zinovkina L.A. Does Nrf2 playarole of a master regulator of mammalian aging? Biochem. (Mosc). 2022;87(12):1465– 1476. doi: 10.1134/S0006297922120045
24. O’Rourke S.A., Shanley L.C., Dunne A. The Nrf2-HO-1 system and inflammaging. Front. Immunol. 2024;15:1457010. doi: 10.3389/fimmu.2024.1457010
25. Lee J., Jang J., Park S.M., Yang S.R. An update on the role of Nrf2 in respiratory disease: molecular mechanisms and therapeutic approaches. Int. J. Mol. Sci. 2021;22(16):8406. doi: 10.3390/ijms22168406
26. Yuan H., Xu Y., Luo Y., Wang N.X., Xiao J.H. Role of Nrf2 in cell senescence regulation. Mol. Cell. Biochem. 2021;476(1):247–259. doi: 10.1007/s11010020-03901-9
27. George M., Tharakan M., Culberson J., Reddy A.P., Reddy P.H. Role of Nrf2 in aging, Alzheimer’s and other neurodegenerative diseases. Ageing Res. Rev. 2022;82:101756. doi: 10.1016/j.arr.2022.101756
28. Weihrauch T., Limberg M.M., Gray N., Schmelz M., Raap U. Neurotrophins: neuroimmune interactions in human atopic diseases. Int. J. Mol. Sci. 2023;24(7):6105. doi: 10.3390/ijms24076105
29. Hu Z.L., Luo C., Hurtado P.R., Li H., Wang S., Hu B., Xu J.M., Liu Y., Feng S.Q., Hurtado-Perez E., Dai R.P. Brain-derived neurotrophic factor precursor in the immune system is a novel target for treating multiple sclerosis. Theranostics. 2021;11(2):715–730. doi: 10.7150/thno.51390
30. Britt R.D. Jr., Thompson M.A., Wicher S.A., Manlove L.J., Roesler A., Fang Y.H., Roos C., Smith L., Miller J.D., Pabelick C.M., Prakash Y.S. Smooth muscle brain-derived neurotrophic factor contributes to airway hyperreactivity in a mouse model of allergic asthma. FASEB J. 2019;33(2):3024–3034. doi: 10.1096/fj.201801002R
31. Hang P.Z., Ge F.Q., Li P.F., Liu J., Zhu H., Zhao J. The regulatory role of the BDNF/TrkB pathway in organ and tissue fibrosis. Histol. Histopathol. 2021;36(11):1133–1143. doi: 10.14670/HH-18-368
32. Wetmore C., Olson L. Neuronal and nonneuronal expression of neurotrophins and their receptors in sensory and sympathetic ganglia suggest new intercellular trophic interactions. J. Comp. Neurol. 1995;353(1):143–159. doi: 10.1002/cne.903530113
33. Crosson T., Bhat S., Wang J.C., Salaun C., Fontaine E., Roversi K., Herzog H., Rafei M., Blunck R., Talbot S. Cytokines reprogram airway sensory neurons in asthma. Cell. Rep. 2024;43(12):115045. doi: 10.1016/j.celrep.2024.115045
34. Sreter K.B., Popovic-Grle S., Lampalo M., Konjevod M., Tudor L., Nikolac Perkovic M., Jukic I., Bingulac-Popovic J., Safic Stanic H., Markeljevic J., Pivac N., Svob Strac D. Plasma brain-derived neurotrophic factor (BDNF) concentration and BDNF/TrkB gene polymorphisms in croatian adults with asthma. J. Pers. Med. 2020;10(4):189. doi: 10.3390/jpm10040189
35. Lommatzsch M., Schloetcke K., Klotz J., Schuhbaeck K., Zingler D., Zingler C., Schulte-Herbrüggen O., Gill H., Schuff-Werner P., Virchow J.C. Brain-derived neurotrophic factor in platelets and airflow limitation in asthma. Am. J. Respir. Crit. Care Med. 2005;171(2):115–120. doi: 10.1164/rccm.200406-758OC
36. Watanabe T., Fajt M.L., Trudeau J.B., Voraphani N., Hu H., Zhou X., Holguin F., Wenzel S.E. Brainderived neurotrophic factor expression in asthma. Association with severity and type 2 inflammatory processes. Am. J. Respir. Cell. Mol. Biol. 2015;53(6):844–852. doi: 10.1165/rcmb.2015-0015OC
37. Joachim R.A., Noga O., Sagach V., Hanf G., Fliege H., Kocalevent R.D., Peters E.M., Klapp B.F. Correlation between immune and neuronal parameters and stress perception in allergic asthmatics. Clin. Exp. Allergy. 2008;38(2):283–290. doi: 10.1111/j.13652222.2007.02899.x
38. Pillai A., Bruno D., Sarreal A.S., Hernando R.T., Saint-Louis L.A., Nierenberg J., Ginsberg S.D., Pomara N., Mehta P.D., Zetterberg H., Blennow K., Buckley P.F. Plasma BDNF levels vary in relation to body weight in females. PLoS ONE. 2012;7(7):e39358. doi: 10.1371/journal.pone.0039358
39. Molinari C., Morsanuto V., Ruga S., Notte F., Farghali M., Galla R., Uberti F. The role of BDNF on aging-modulation markers. Brain Sci. 2020;10(5):285. doi: 10.3390/brainsci10050285
40. Nagahara A.H., Tuszynski M.H. Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat. Rev. Drug. Discov. 2011;10(3):209–219. doi: 10.1038/nrd3366
41. Abdelkhalek K., Rhein M., Deest M., Buchholz V., Bleich S., Lichtinghagen R., Vyssoki B., Frieling H., Muschler M., Proskynitopoulos P.J., Glahn A. Dysregulated methylation patterns in exon IV of the brain-derived neurotrophic factor (BDNF) gene in nicotine dependence and changes in BDNF plasma levels during smoking cessation. Front. Psychiatry. 2022;13:897801. doi: 10.3389/fpsyt.2022.897801
42. Bhang S.Y., Choi S.W., Ahn J.H. Changes in plasma brain-derived neurotrophic factor levels in smokers after smoking cessation. Neurosci. Lett. 2010;468(1):7–11. doi: 10.1016/j.neulet.2009.10.046
43. Xia H., Du X., Yin G., Zhang Y., Li X., Cai J., Huang X., Ning Y., Soares J.C., Wu F., Zhang X.Y. Effects of smoking on cognition and BDNF levels in a male Chinese population: Relationship with BDNF Val66Met polymorphism. Sci. Rep. 2019;9(1):217. doi: 10.1038/s41598-018-36419-8
44. Santoro A., Bientinesi E., Monti D. Immunosenescence and inflammaging in the aging process: age-related diseases or longevity? Ageing Res. Rev. 2021;71:101422. doi: 10.1016/j.arr.2021.101422
45. Pawelec G., Bronikowski A., Cunnane S.C., Ferrucci L., Franceschi C., Fülöp T., Gaudreau P., Gladyshev V.N., Gonos E.S., Gorbunova V., … Cohen A.A. The conundrum of human immune system “senescence”. Mech. Ageing Dev. 2020;192:111357. doi: 10.1016/j.mad.2020.111357
46. Roth-Walter F., Adcock I.M., Benito-Villalvilla C., Bianchini R., Bjermer L., Caramori G., Cari L., Chung K.F., Diamant Z., Eguiluz-Gracia I., … Stellato C. Metabolic pathways in immune senescence and inflammaging: Novel therapeutic strategy for chronic inflammatory lung diseases. An EAACI position paper from the Task Force for Immunopharmacology. Allergy. 2024;79(5):1089–1122. doi: 10.1111/all.15977
47. Ajoolabady A., Pratico D., Tang D., Zhou S., Franceschi C., Ren J. Immunosenescence and inflammaging: Mechanisms and role in diseases. Ageing Res. Rev. 2024;101:102540. doi: 10.1016/j.arr.2024.102540
48. Rodrigues L.P., Teixeira V.R., Alencar-Silva T., Simonassi-Paiva B., Pereira R.W., Pogue R., Carvalho J.L. Hallmarks of aging and immunosenescence: Connecting the dots. Cytokine Growth Factor Rev. 2021;59:9–21. doi: 10.1016/j.cytogfr.2021.01.006
49. Martínez de Toda I., Ceprián N., Díaz-Del Cerro E., de la Fuente M. The role of immune cells in oxiinflamm-aging. Cells. 2021;10(11):2974. doi: 10.3390/cells10112974
50. Kang J.Y., Choi H., Oh J.M., Kim M., Lee D.C. PM (2.5) induces pyroptosis via activation of the ROS/ NF-κB signaling pathway in bronchial epithelial cells. Medicina (Kaunas). 2024;60(9):1434. doi: 10.3390/medicina60091434
51. Drake L.Y., Roos B.B., Wicher S.A., Khalfaoui L., Nesbitt L.L., Fang Y.H., Pabelick C.M., Prakash Y.S. Aging, brain-derived neurotrophic factor, and allergen-induced pulmonary responses in mice. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2025;328(2):L290– L300. doi: 10.1152/ajplung.00145.2024
52. Кuruvilla M.E., Lee F.E., Lee G.B. Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin. Rev. Allergy. Immunol. 2019;56(2):219–233. doi: 10.1007/s12016-018-8712-1
53. Murtazina A., Adameyko I. The peripheral nervous system. Development. 2023;150(9):dev201164. doi: 10.1242/dev.201164
54. Nazarinia D., Behzadifard M., Gholampour J., Karimi R., Gholampour MEotaxin-1 (CCL11) in neuroinflammatory disorders and possible role in COVID-19 neurologic complications. Acta Neurol. Belg. 2022;122(4):865–869. doi: 10.1007/s13760-02201984-3
55. Rosenkranz M.A., Dean D.C., Bendlin B.B., Jarjour N.N., Esnault S., Zetterberg H., Heslegrave A., Evans M.D., Davidson R.J., Busse W.W. Neuroimaging and biomarker evidence of neurodegeneration in asthma. J. Allergy Clin. Immunol. 2022;149(2):589–598.e6. doi: 10.1016/j.jaci.2021.09.010
56. Dragunas G., Koster C.S., de Souza Xavier Costa N., Melgert B.N., Munhoz C.D., Gosens R., Mauad T. Neuroplasticity and neuroimmune interactions in fatal asthma. Allergy. 2025;80(2):462–473. doi: 10.1111/all.16373
57. Zhang W., Sun H.S., Wang X., Dumont A.S., Liu Q. Cellular senescence, DNA damage, and neuroinflammation in the aging brain. Trends Neurosci. 2024;47(6):461–474. doi: 10.1016/j.tins.2024.04.003
58. Rysanek D., Vasicova P., Kolla J.N., Sedlak D., Andera L., Bartek J., Hodny Z. Synergism of BCL-2 family inhibitors facilitates selective elimination of senescent cells. Aging (Albany NY). 2022;14(16):6381– 6414. doi: 10.18632/aging.204207
59. Xie Y., He Y., Liang J., Liu J., Ke C., Mo X., Zeng C., Wang S., Chen X., Ao D., Tang J., Li W. SIRT5 alleviated eosinophilic asthma through ROS inhibition and Nrf2/HO-1 activation. Inflammation. 2025. doi: 10.1007/s10753-025-02257-w
60. Li K., Ji X., Tian S., Li J., Tian Y., Ma X., Li H., Zhang H., Chen C.T., Gu W. Oxidative stress in asthma pathogenesis: mechanistic insights and implications for airway smooth muscle dysfunction. Cell Tissue Res. 2025;400(1):17–34. doi: 10.1007/s00441-025-03953-7
61. Baird L., Yamamoto M. The molecular mechanisms regulating the KEAP1-NRF2 pathway. Mol. Cell. Biol. 2020;40(13):e00099–20. doi: 10.1128/MCB.00099-20
62. Grosche J., Meissner J., Eble J.A. More than a syllable in fib-ROS-is: the role of ROS on the fibrotic extracellular matrix and on cellular contacts. Mol. Asp. Med. 2018;63:30–46. doi: 10.1016/j.mam.2018.03.005
63. Adinolfi S., Patinen T., Jawahar Deen A., Pitkänen S., Härkönen J., Kansanen E., Küblbeck J., Levonen A.L. The KEAP1-NRF2 pathway: Targets for therapy and role in cancer. Redox. Biol. 2023;63:102726. doi: 10.1016/j.redox.2023.102726
64. Nguyen C.D., Yoo J., Hwang S.Y., Cho S.Y., Kim M., Jang H., No K.O., Shin J.C., Kim J.H., Lee G. Bee venom activates the Nrf2/HO-1 and TrkB/CREB/ BDNF pathways in neuronal cell responses against oxidative stress induced by Aβ1-42. Int. J. Mol. Sci. 2022;23(3):1193. doi: 10.3390/ijms23031193
65. Soni R., Pankaj V., Roy S., Khairnar A., Shah J. Upregulation of the PI3K/AKT and Nrf2 pathways by the DPP-4 inhibitor sitagliptin renders neuroprotection in chemically induced Parkinson’s disease mouse models. ACS. Chem. Neurosci. 2025;16(7):1402–1417. doi: 10.1021/acschemneuro.5c00112
66. Xu X., Sun X., Wan X., Chen X., Jiang X. Mitomycin induces alveolar epithelial cell senescence by down-regulating GSK3beta signaling. Toxicol Lett. 2021;352:61–69. doi: 10.1016/j.toxlet.2021.09.015
67. Luan X., Cui C., Jiang J., Wang C., Li L., Li H., Xu C., Li L., Chi Y., Yan G. Salidroside Mitigates Airway Inflammation in Asthmatic Mice via the AMPK/ Akt/GSK3β Signaling Pathway. Int. Arch. Allergy Immunol. 2022;183(3):326–336. doi: 10.1159/000519295
68. Zheng H., Yang Z., Xin Z., Yang Y., Yu Y., Cui J., Liu H., Chen F. Glycogen synthase kinase-3β: a promising candidate in the fight against fibrosis. Theranostics. 2020;10(25):11737–11753. doi: 10.7150/thno.47717
69. Sakuma R., Minato Y., Maeda S., Yagi H. Nrf2 phosphorylation contributes to acquisition of pericyte reprogramming via the PKCdelta pathway. Neurobiol. Dis. 2025;206:106824. doi: 10.1016/j.nbd.2025.106824
70. Díaz-Ruíz J.L., Macías-López A., AlcaláVargas F., Guevara-Chávez J.G., Mejía-Uribe A., SilvaPalacios A., Zúñiga-Muñoz A., Zazueta C., BuelnaChontal M. Redox signaling in ischemic postconditioning protection involves PKCepsilon and Erk1/2 pathways and converges indirectly in Nrf2 activation. Cell Signal. 2019;64:109417. doi: 10.1016/j.cellsig.2019.109417
71. Xu Y., Yuan H., Luo Y., Zhao Y.J., Xiao J.H. Ganoderic acid D protects human amniotic mesenchymal stem cells against oxidative stress-induced senescence through the PERK/NRF2 signaling pathway. Oxid. Med. Cell. Longev. 2020;2020:8291413. doi: 10.1155/2020/8291413
72. Saleem S. Targeting MAPK signaling: A promising approach for treating inflammatory lung disease. Pathol. Res. Pract. 2024;254:155122. doi: 10.1016/j.prp.2024.155122
73. Shin M.G., Lee J.W., Han J.S., Lee B., Jeong J.H., Park S.H., Kim J.H., Jang S., Park M., Kim S.Y., … Kwon E.S., Bacteria-derived metabolite, methylglyoxal, modulates the longevity of C. elegans through TORC2/SGK-1/DAF-16 signaling. Proc. Natl. Acad. Sci. USA. 2020;117(29):17142–17150. doi: 10.1073/pnas.1915719117
74. Lee H.S., Park H.W. Role of mTOR in the development of asthma in mice with cigarette smokeinduced cellular senescence. J. Gerontol. A. Biol. Sci. Med. Sci. 2022;77(3):433–442. doi: 10.1093/gerona/glab303
75. Peng C., Xue L., Yue Y., Chen W., Wang W., Shen J. Duloxetine HCl alleviates asthma symptoms by regulating PI3K/AKT/mTOR and Nrf2/HO-1 signaling pathways. Inflammation. 2023;46(6):2449–2469. doi: 10.1007/s10753-023-01892-5
76. Yao W., Lin S., Su J., Cao Q., Chen Y., Chen J., Zhang Z., Hashimoto K., Qi Q., Zhang J.C. Activation of BDNF by transcription factor Nrf2 contributes to antidepressant-like actions in rodents. Transl. Psychiatry. 2021;11(1):140. doi: 10.1038/s41398-021-01261-6
77. Reyes-Soto C.Y., Ramírez-Carreto R.J., OrtízAlegría L.B., Silva-Palacios A., Zazueta C., GalvánArzate S., Karasu Ç., Túnez I., Tinkov A.A., Aschner M., … Santamaría A. S-Allylcysteine protects against excitotoxic damage in rat cortical slices via reduction of oxidative damage, activation of Nrf2/ARE binding, and BDNF preservation. Neurotox. Res. 2020;38(4):929– 940. doi: 10.1007/s12640-020-00260-7
78. Cao Q., Zou Q., Zhao X., Zhang Y., Qu Y., Wang N., Murayama S., Qi Q., Hashimoto K., Lin S., Zhang J.C. Regulation of BDNF transcription by Nrf2 and MeCP2 ameliorates MPTP-induced neurotoxicity. Cell Death Discov. 2022;8(1):267. doi: 10.1038/s41420-022-01063-9
Рецензия
JATS XML






























