Preview

Сибирский научный медицинский журнал

Advanced search

The role of brain-derived neurotrophic factors in the pathogenesis of asthma in elderly

https://doi.org/10.18699/SSMJ20250607

Abstract

The brain­derived neurotrophic factor (BDNF) is abundantly expressed in nervous and immune systems, as well as in bronchopulmonary system and involves in cellular aging, which figures out interest in studying its role in asthma pathogenesis in the elderly (late asthma). BDNF activation can occur not only through its connection with cellular receptors (tropomyosin receptor kinase B (TrkB) and P75 neurotrophic receptor (p75NTR), but also through Keap1/ Nrf2 pathway. Both signalling pathways linked with asthma and aging. In addition, Keap1­independent pathways of Nrf2 activation were described, which are associated with the activity of BDNF and also participate in the aging process and pathogenesis of the asthma. Aging cells acquire senescence­associated secretory phenotype (SASP), which is involved in the progression of immunosenescence, inflammaging, lung aging and is capable of mediating the development of asthma in elderly. On the other hand, aging cells can express BDNF and TRKB, which support their viability through SASP. The fact that TRK inhibitors can reduce the viability of aging cells in the experiment allows us to look in a new way at the role of TRKB/BDNF as a target in the treatment of asthma. The role of Nrf2 is described in cellular aging and related SASP, which can also be of interest from the standpoint of studying its role in pathogenesis in the elderly. This review summarizes modern information regarding BDNF, its receptor and receptor­dependent action, as well as the role in inflammation, inflammaging and asthma pathogenesis in elderly.

About the Authors

O. Yu. Kytikova
Vladivostok Branch Far Eastern Scientific Center of Physiology and Pathology of Respiration– Institute of Medical Climatology and Rehabilitative Treatment
Russian Federation

Oxana Yu. Kytikova - doctor of medical sciences.

60105, Vladivostok, Russkaya st., 73-g



M. V. Antonyuk
Vladivostok Branch Far Eastern Scientific Center of Physiology and Pathology of Respiration– Institute of Medical Climatology and Rehabilitative Treatment
Russian Federation

Marina V. Antonyuk - doctor of medical sciences, professor.

60105, Vladivostok, Russkaya st., 73-g



T. P. Novgorodtseva
Vladivostok Branch Far Eastern Scientific Center of Physiology and Pathology of Respiration– Institute of Medical Climatology and Rehabilitative Treatment
Russian Federation

Tatyana P. Novgorodtseva - doctor of biological sciences, professor.

60105, Vladivostok, Russkaya st., 73-g



T. A. Gvozdenko
Vladivostok Branch Far Eastern Scientific Center of Physiology and Pathology of Respiration– Institute of Medical Climatology and Rehabilitative Treatment
Russian Federation

Tatyana A. Grozdenko - doctor of medical sciences, professor.

60105, Vladivostok, Russkaya st., 73-g



A. A. Uksumenko
Vladivostok Branch Far Eastern Scientific Center of Physiology and Pathology of Respiration– Institute of Medical Climatology and Rehabilitative Treatment
Russian Federation

Anna A. Uksumenko - candidate of medical sciences.

60105, Vladivostok, Russkaya st., 73-g



K. A. Syunikova
Vladivostok Branch Far Eastern Scientific Center of Physiology and Pathology of Respiration– Institute of Medical Climatology and Rehabilitative Treatment
Russian Federation

Kseniia A. Syunikova

60105, Vladivostok, Russkaya st., 73-g



References

1. Cheng X., Yang Y., Schwebel D.C., Liu Z., Li L., Cheng P., Ning P., Hu G. Population ageing and mortality during 1990–2017: A global decomposition analysis. PloS. Med. 2020;17(6):e1003138. doi: 10.1371/journal.pmed.1003138

2. Valverde-Monge M., Cárdenas R., García-Moguel I., Rosado A., Gandolfo-Cano M., Echarren T.R., Moro-Moro M.D.M., Reaño Martos M.D.M., PinedaPineda R., Arroba C.M., Domínguez-Ortega J.; AIRE Group. Safety and efficacy of benralizumab in elderly subjects with severe asthma .J. Asthma. 2024;61(3): 232–237. doi: 10.1080/02770903.2023.2263078

3. Birch J., Gil J. Senescence and the SASP: many therapeutic avenues. Genes Dev. 2020;34(2324):1565–1576. doi: 10.1101/gad.343129.120

4. Wang Z.N., Su R.N., Yang B.Y., Yang K.X., Yang L.F., Yan Y., Chen Z.G. Potential role of cellular senescence in asthma. Front. Cell. Dev. Biol. 2020;8:59. doi: 10.3389/fcell.2020.00059

5. Soma T., Nagata M. Immunosenescence, Inflammaging, and Lung Senescence in Asthma in the Elderly. Biomolecules. 2022;12(10):1456. doi: 10.3390/biom1210145

6. Wang W., Zhou K., Wang L., Qin Q., Liu H., Qin L., Yang M., Yuan L., Liu C. Aging in chronic lung disease: Will anti-aging therapy be the key to the cure? Eur. J. Pharmacol. 2024;980:176846. doi: 10.1016/j.ejphar.2024.176846

7. Anerillas C., Herman A.B., Munk R., Garrido A., Lam K.G., Payea M.J., Rossi M., Tsitsipatis D., Martindale J.L., Piao Y., … Gorospe M. A BDNF-TrkB autocrine loop enhances senescent cell viability. Nat. Commun. 2022;13(1):6228. doi: 10.1038/s41467-02233709-8

8. McPhee G.M., Downey L.A., Stough C. Neurotrophins as a reliable biomarker for brain function, structure and cognition: A systematic review and metaanalysis. Neurobiol. Learn. Mem. 2020;175:107298. doi: 10.1016/j.nlm.2020.107298

9. Faraji J.S., Metz G.A. Harnessing BDNF signaling to promote resilience in aging. Aging Dis. 2024;16(4):1813–1841. doi: 10.14336/AD.2024.0961

10. Tamayo J.M., Osman H.C., Schwartzer J.J., Ashwood P. The influence of asthma on neuroinflammation and neurodevelopment: From epidemiology to basic models. Brain Behav. Immun. 2024;116:218–228. doi: 10.1016/j.bbi.2023.12.003

11. Kabata H., Artis D. Neuro-immune crosstalk and allergic inflammation. J. Clin. Invest. 2019;129(4):1475–1482. doi: 10.1172/JCI124609

12. Nagashima H., Mahlakõiv T., Shih H.Y., Davis F.P., Meylan F., Huang Y., Harrison O.J., Yao C., Mikami Y., Urban J.F. Jr., … O’Shea J.J. Neuropeptide CGRP limits group 2 innate lymphoid cell responses and constrains type 2 inflammation. Immunity. 2019;51(4):682–695.e6. doi: 10.1016/j.immuni.2019.06.009

13. Tamari M., Del Bel K.L., Ver Heul A.M., Zamidar L., Orimo K., Hoshi M., Trier A.M., Yano H., Yang T.L., Biggs C.M., … Kim B.S. Sensory neurons promote immune homeostasis in the lung. Cell. 2024;187(1):44–61.e17. doi: 10.1016/j.cell.2023.11.027

14. Wang N., Wang J., Zhang Y., Hu S., Zhang T., Wu Y., Sun X., Zhang T., Yang S., He L. Substance Pinduced lung inflammation in mice is mast cell dependen. Clin. Exp. Allergy. 2022;52(1):46–58. doi: 10.1111/cea.13902

15. Wanner S.P., Garami A., Pakai E., Oliveira D.L., Gavva N.R., Coimbra C.C., Romanovsky A.A. Aging reverses the role of the transient receptor potential vanilloid-1 channel in systemic inflammation from anti-inflammatory to proinflammatory. Cell Cycle. 2012;11(2):343–349. doi: 10.4161/cc.11.2.18772

16. Paris A.J., Hayer K.E., Oved J.H., Avgousti D.C., Toulmin S.A., Zepp J.A., Zacharias W.J., Katzen J.B., Basil M.C., Kremp M.M., … Worthen G.S. STAT3-BDNF-TrkB signalling promotes alveolar epithelial regeneration after lung injury. Nat. Cell. Biol. 2020;22(10):1197–1210. doi: 10.1038/s41556-020-0569-x

17. Freeman M.R., Sathish V., Manlove L., Wang S., Britt R.D. Jr., Thompson M.A., Pabelick C.M., Prakash Y.S. Brain-derived neurotrophic factor and airway fibrosis in asthma. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2017;313(2):L360–L370. doi: 10.1152/ajplung.00580.2016

18. Kojima M., Ishii C., Sano Y., Mizui T., Furuichi T. Journey of brain-derived neurotrophic factor: from intracellular trafficking to secretion. Cell. Tissue. Res. 2020;382(1):125–134. doi: 10.1007/s00441-02003274-x

19. Fath J., Brouillard F., Cabaye A., Claverie D., Nuss P., Poillerat V., Chwetzoff S., Bouceba T., Bouvier E., Salameh M., … Becker C. A receptor-independent signaling pathway for BDNF. bioRxiv. 2022. doi: 10.1101/2022.08.23.504973

20. Yu C., Xiao J.H. The Keap1-Nrf2 system: a mediator between oxidative stress and aging. Oxid. Med. Cell. Longev. 2021;2021:6635460. doi: 10.1155/2021/6635460

21. Kaur M., Aran K.R. Unraveling the role of Nrf2 in dopaminergic neurons: a review of oxidative stress and mitochondrial dysfunction in Parkinson’s disease. Metab. Brain. Dis. 2025;40(2):123. doi: 10.1007/s11011-025-01552-7

22. Hiebert P. The Nrf2 transcription factor: A multifaceted regulator of the extracellular matrix. Matrix. Biol. Plus. 2021;10:100057. doi: 10.1016/j.mbplus.2021.100057

23. Zinovkin R.A., Kondratenko N.D., Zinovkina L.A. Does Nrf2 playarole of a master regulator of mammalian aging? Biochem. (Mosc). 2022;87(12):1465– 1476. doi: 10.1134/S0006297922120045

24. O’Rourke S.A., Shanley L.C., Dunne A. The Nrf2-HO-1 system and inflammaging. Front. Immunol. 2024;15:1457010. doi: 10.3389/fimmu.2024.1457010

25. Lee J., Jang J., Park S.M., Yang S.R. An update on the role of Nrf2 in respiratory disease: molecular mechanisms and therapeutic approaches. Int. J. Mol. Sci. 2021;22(16):8406. doi: 10.3390/ijms22168406

26. Yuan H., Xu Y., Luo Y., Wang N.X., Xiao J.H. Role of Nrf2 in cell senescence regulation. Mol. Cell. Biochem. 2021;476(1):247–259. doi: 10.1007/s11010020-03901-9

27. George M., Tharakan M., Culberson J., Reddy A.P., Reddy P.H. Role of Nrf2 in aging, Alzheimer’s and other neurodegenerative diseases. Ageing Res. Rev. 2022;82:101756. doi: 10.1016/j.arr.2022.101756

28. Weihrauch T., Limberg M.M., Gray N., Schmelz M., Raap U. Neurotrophins: neuroimmune interactions in human atopic diseases. Int. J. Mol. Sci. 2023;24(7):6105. doi: 10.3390/ijms24076105

29. Hu Z.L., Luo C., Hurtado P.R., Li H., Wang S., Hu B., Xu J.M., Liu Y., Feng S.Q., Hurtado-Perez E., Dai R.P. Brain-derived neurotrophic factor precursor in the immune system is a novel target for treating multiple sclerosis. Theranostics. 2021;11(2):715–730. doi: 10.7150/thno.51390

30. Britt R.D. Jr., Thompson M.A., Wicher S.A., Manlove L.J., Roesler A., Fang Y.H., Roos C., Smith L., Miller J.D., Pabelick C.M., Prakash Y.S. Smooth muscle brain-derived neurotrophic factor contributes to airway hyperreactivity in a mouse model of allergic asthma. FASEB J. 2019;33(2):3024–3034. doi: 10.1096/fj.201801002R

31. Hang P.Z., Ge F.Q., Li P.F., Liu J., Zhu H., Zhao J. The regulatory role of the BDNF/TrkB pathway in organ and tissue fibrosis. Histol. Histopathol. 2021;36(11):1133–1143. doi: 10.14670/HH-18-368

32. Wetmore C., Olson L. Neuronal and nonneuronal expression of neurotrophins and their receptors in sensory and sympathetic ganglia suggest new intercellular trophic interactions. J. Comp. Neurol. 1995;353(1):143–159. doi: 10.1002/cne.903530113

33. Crosson T., Bhat S., Wang J.C., Salaun C., Fontaine E., Roversi K., Herzog H., Rafei M., Blunck R., Talbot S. Cytokines reprogram airway sensory neurons in asthma. Cell. Rep. 2024;43(12):115045. doi: 10.1016/j.celrep.2024.115045

34. Sreter K.B., Popovic-Grle S., Lampalo M., Konjevod M., Tudor L., Nikolac Perkovic M., Jukic I., Bingulac-Popovic J., Safic Stanic H., Markeljevic J., Pivac N., Svob Strac D. Plasma brain-derived neurotrophic factor (BDNF) concentration and BDNF/TrkB gene polymorphisms in croatian adults with asthma. J. Pers. Med. 2020;10(4):189. doi: 10.3390/jpm10040189

35. Lommatzsch M., Schloetcke K., Klotz J., Schuhbaeck K., Zingler D., Zingler C., Schulte-Herbrüggen O., Gill H., Schuff-Werner P., Virchow J.C. Brain-derived neurotrophic factor in platelets and airflow limitation in asthma. Am. J. Respir. Crit. Care Med. 2005;171(2):115–120. doi: 10.1164/rccm.200406-758OC

36. Watanabe T., Fajt M.L., Trudeau J.B., Voraphani N., Hu H., Zhou X., Holguin F., Wenzel S.E. Brainderived neurotrophic factor expression in asthma. Association with severity and type 2 inflammatory processes. Am. J. Respir. Cell. Mol. Biol. 2015;53(6):844–852. doi: 10.1165/rcmb.2015-0015OC

37. Joachim R.A., Noga O., Sagach V., Hanf G., Fliege H., Kocalevent R.D., Peters E.M., Klapp B.F. Correlation between immune and neuronal parameters and stress perception in allergic asthmatics. Clin. Exp. Allergy. 2008;38(2):283–290. doi: 10.1111/j.13652222.2007.02899.x

38. Pillai A., Bruno D., Sarreal A.S., Hernando R.T., Saint-Louis L.A., Nierenberg J., Ginsberg S.D., Pomara N., Mehta P.D., Zetterberg H., Blennow K., Buckley P.F. Plasma BDNF levels vary in relation to body weight in females. PLoS ONE. 2012;7(7):e39358. doi: 10.1371/journal.pone.0039358

39. Molinari C., Morsanuto V., Ruga S., Notte F., Farghali M., Galla R., Uberti F. The role of BDNF on aging-modulation markers. Brain Sci. 2020;10(5):285. doi: 10.3390/brainsci10050285

40. Nagahara A.H., Tuszynski M.H. Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat. Rev. Drug. Discov. 2011;10(3):209–219. doi: 10.1038/nrd3366

41. Abdelkhalek K., Rhein M., Deest M., Buchholz V., Bleich S., Lichtinghagen R., Vyssoki B., Frieling H., Muschler M., Proskynitopoulos P.J., Glahn A. Dysregulated methylation patterns in exon IV of the brain-derived neurotrophic factor (BDNF) gene in nicotine dependence and changes in BDNF plasma levels during smoking cessation. Front. Psychiatry. 2022;13:897801. doi: 10.3389/fpsyt.2022.897801

42. Bhang S.Y., Choi S.W., Ahn J.H. Changes in plasma brain-derived neurotrophic factor levels in smokers after smoking cessation. Neurosci. Lett. 2010;468(1):7–11. doi: 10.1016/j.neulet.2009.10.046

43. Xia H., Du X., Yin G., Zhang Y., Li X., Cai J., Huang X., Ning Y., Soares J.C., Wu F., Zhang X.Y. Effects of smoking on cognition and BDNF levels in a male Chinese population: Relationship with BDNF Val66Met polymorphism. Sci. Rep. 2019;9(1):217. doi: 10.1038/s41598-018-36419-8

44. Santoro A., Bientinesi E., Monti D. Immunosenescence and inflammaging in the aging process: age-related diseases or longevity? Ageing Res. Rev. 2021;71:101422. doi: 10.1016/j.arr.2021.101422

45. Pawelec G., Bronikowski A., Cunnane S.C., Ferrucci L., Franceschi C., Fülöp T., Gaudreau P., Gladyshev V.N., Gonos E.S., Gorbunova V., … Cohen A.A. The conundrum of human immune system “senescence”. Mech. Ageing Dev. 2020;192:111357. doi: 10.1016/j.mad.2020.111357

46. Roth-Walter F., Adcock I.M., Benito-Villalvilla C., Bianchini R., Bjermer L., Caramori G., Cari L., Chung K.F., Diamant Z., Eguiluz-Gracia I., … Stellato C. Metabolic pathways in immune senescence and inflammaging: Novel therapeutic strategy for chronic inflammatory lung diseases. An EAACI position paper from the Task Force for Immunopharmacology. Allergy. 2024;79(5):1089–1122. doi: 10.1111/all.15977

47. Ajoolabady A., Pratico D., Tang D., Zhou S., Franceschi C., Ren J. Immunosenescence and inflammaging: Mechanisms and role in diseases. Ageing Res. Rev. 2024;101:102540. doi: 10.1016/j.arr.2024.102540

48. Rodrigues L.P., Teixeira V.R., Alencar-Silva T., Simonassi-Paiva B., Pereira R.W., Pogue R., Carvalho J.L. Hallmarks of aging and immunosenescence: Connecting the dots. Cytokine Growth Factor Rev. 2021;59:9–21. doi: 10.1016/j.cytogfr.2021.01.006

49. Martínez de Toda I., Ceprián N., Díaz-Del Cerro E., de la Fuente M. The role of immune cells in oxiinflamm-aging. Cells. 2021;10(11):2974. doi: 10.3390/cells10112974

50. Kang J.Y., Choi H., Oh J.M., Kim M., Lee D.C. PM (2.5) induces pyroptosis via activation of the ROS/ NF-κB signaling pathway in bronchial epithelial cells. Medicina (Kaunas). 2024;60(9):1434. doi: 10.3390/medicina60091434

51. Drake L.Y., Roos B.B., Wicher S.A., Khalfaoui L., Nesbitt L.L., Fang Y.H., Pabelick C.M., Prakash Y.S. Aging, brain-derived neurotrophic factor, and allergen-induced pulmonary responses in mice. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2025;328(2):L290– L300. doi: 10.1152/ajplung.00145.2024

52. Кuruvilla M.E., Lee F.E., Lee G.B. Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin. Rev. Allergy. Immunol. 2019;56(2):219–233. doi: 10.1007/s12016-018-8712-1

53. Murtazina A., Adameyko I. The peripheral nervous system. Development. 2023;150(9):dev201164. doi: 10.1242/dev.201164

54. Nazarinia D., Behzadifard M., Gholampour J., Karimi R., Gholampour MEotaxin-1 (CCL11) in neuroinflammatory disorders and possible role in COVID-19 neurologic complications. Acta Neurol. Belg. 2022;122(4):865–869. doi: 10.1007/s13760-02201984-3

55. Rosenkranz M.A., Dean D.C., Bendlin B.B., Jarjour N.N., Esnault S., Zetterberg H., Heslegrave A., Evans M.D., Davidson R.J., Busse W.W. Neuroimaging and biomarker evidence of neurodegeneration in asthma. J. Allergy Clin. Immunol. 2022;149(2):589–598.e6. doi: 10.1016/j.jaci.2021.09.010

56. Dragunas G., Koster C.S., de Souza Xavier Costa N., Melgert B.N., Munhoz C.D., Gosens R., Mauad T. Neuroplasticity and neuroimmune interactions in fatal asthma. Allergy. 2025;80(2):462–473. doi: 10.1111/all.16373

57. Zhang W., Sun H.S., Wang X., Dumont A.S., Liu Q. Cellular senescence, DNA damage, and neuroinflammation in the aging brain. Trends Neurosci. 2024;47(6):461–474. doi: 10.1016/j.tins.2024.04.003

58. Rysanek D., Vasicova P., Kolla J.N., Sedlak D., Andera L., Bartek J., Hodny Z. Synergism of BCL-2 family inhibitors facilitates selective elimination of senescent cells. Aging (Albany NY). 2022;14(16):6381– 6414. doi: 10.18632/aging.204207

59. Xie Y., He Y., Liang J., Liu J., Ke C., Mo X., Zeng C., Wang S., Chen X., Ao D., Tang J., Li W. SIRT5 alleviated eosinophilic asthma through ROS inhibition and Nrf2/HO-1 activation. Inflammation. 2025. doi: 10.1007/s10753-025-02257-w

60. Li K., Ji X., Tian S., Li J., Tian Y., Ma X., Li H., Zhang H., Chen C.T., Gu W. Oxidative stress in asthma pathogenesis: mechanistic insights and implications for airway smooth muscle dysfunction. Cell Tissue Res. 2025;400(1):17–34. doi: 10.1007/s00441-025-03953-7

61. Baird L., Yamamoto M. The molecular mechanisms regulating the KEAP1-NRF2 pathway. Mol. Cell. Biol. 2020;40(13):e00099–20. doi: 10.1128/MCB.00099-20

62. Grosche J., Meissner J., Eble J.A. More than a syllable in fib-ROS-is: the role of ROS on the fibrotic extracellular matrix and on cellular contacts. Mol. Asp. Med. 2018;63:30–46. doi: 10.1016/j.mam.2018.03.005

63. Adinolfi S., Patinen T., Jawahar Deen A., Pitkänen S., Härkönen J., Kansanen E., Küblbeck J., Levonen A.L. The KEAP1-NRF2 pathway: Targets for therapy and role in cancer. Redox. Biol. 2023;63:102726. doi: 10.1016/j.redox.2023.102726

64. Nguyen C.D., Yoo J., Hwang S.Y., Cho S.Y., Kim M., Jang H., No K.O., Shin J.C., Kim J.H., Lee G. Bee venom activates the Nrf2/HO-1 and TrkB/CREB/ BDNF pathways in neuronal cell responses against oxidative stress induced by Aβ1-42. Int. J. Mol. Sci. 2022;23(3):1193. doi: 10.3390/ijms23031193

65. Soni R., Pankaj V., Roy S., Khairnar A., Shah J. Upregulation of the PI3K/AKT and Nrf2 pathways by the DPP-4 inhibitor sitagliptin renders neuroprotection in chemically induced Parkinson’s disease mouse models. ACS. Chem. Neurosci. 2025;16(7):1402–1417. doi: 10.1021/acschemneuro.5c00112

66. Xu X., Sun X., Wan X., Chen X., Jiang X. Mitomycin induces alveolar epithelial cell senescence by down-regulating GSK3beta signaling. Toxicol Lett. 2021;352:61–69. doi: 10.1016/j.toxlet.2021.09.015

67. Luan X., Cui C., Jiang J., Wang C., Li L., Li H., Xu C., Li L., Chi Y., Yan G. Salidroside Mitigates Airway Inflammation in Asthmatic Mice via the AMPK/ Akt/GSK3β Signaling Pathway. Int. Arch. Allergy Immunol. 2022;183(3):326–336. doi: 10.1159/000519295

68. Zheng H., Yang Z., Xin Z., Yang Y., Yu Y., Cui J., Liu H., Chen F. Glycogen synthase kinase-3β: a promising candidate in the fight against fibrosis. Theranostics. 2020;10(25):11737–11753. doi: 10.7150/thno.47717

69. Sakuma R., Minato Y., Maeda S., Yagi H. Nrf2 phosphorylation contributes to acquisition of pericyte reprogramming via the PKCdelta pathway. Neurobiol. Dis. 2025;206:106824. doi: 10.1016/j.nbd.2025.106824

70. Díaz-Ruíz J.L., Macías-López A., AlcaláVargas F., Guevara-Chávez J.G., Mejía-Uribe A., SilvaPalacios A., Zúñiga-Muñoz A., Zazueta C., BuelnaChontal M. Redox signaling in ischemic postconditioning protection involves PKCepsilon and Erk1/2 pathways and converges indirectly in Nrf2 activation. Cell Signal. 2019;64:109417. doi: 10.1016/j.cellsig.2019.109417

71. Xu Y., Yuan H., Luo Y., Zhao Y.J., Xiao J.H. Ganoderic acid D protects human amniotic mesenchymal stem cells against oxidative stress-induced senescence through the PERK/NRF2 signaling pathway. Oxid. Med. Cell. Longev. 2020;2020:8291413. doi: 10.1155/2020/8291413

72. Saleem S. Targeting MAPK signaling: A promising approach for treating inflammatory lung disease. Pathol. Res. Pract. 2024;254:155122. doi: 10.1016/j.prp.2024.155122

73. Shin M.G., Lee J.W., Han J.S., Lee B., Jeong J.H., Park S.H., Kim J.H., Jang S., Park M., Kim S.Y., … Kwon E.S., Bacteria-derived metabolite, methylglyoxal, modulates the longevity of C. elegans through TORC2/SGK-1/DAF-16 signaling. Proc. Natl. Acad. Sci. USA. 2020;117(29):17142–17150. doi: 10.1073/pnas.1915719117

74. Lee H.S., Park H.W. Role of mTOR in the development of asthma in mice with cigarette smokeinduced cellular senescence. J. Gerontol. A. Biol. Sci. Med. Sci. 2022;77(3):433–442. doi: 10.1093/gerona/glab303

75. Peng C., Xue L., Yue Y., Chen W., Wang W., Shen J. Duloxetine HCl alleviates asthma symptoms by regulating PI3K/AKT/mTOR and Nrf2/HO-1 signaling pathways. Inflammation. 2023;46(6):2449–2469. doi: 10.1007/s10753-023-01892-5

76. Yao W., Lin S., Su J., Cao Q., Chen Y., Chen J., Zhang Z., Hashimoto K., Qi Q., Zhang J.C. Activation of BDNF by transcription factor Nrf2 contributes to antidepressant-like actions in rodents. Transl. Psychiatry. 2021;11(1):140. doi: 10.1038/s41398-021-01261-6

77. Reyes-Soto C.Y., Ramírez-Carreto R.J., OrtízAlegría L.B., Silva-Palacios A., Zazueta C., GalvánArzate S., Karasu Ç., Túnez I., Tinkov A.A., Aschner M., … Santamaría A. S-Allylcysteine protects against excitotoxic damage in rat cortical slices via reduction of oxidative damage, activation of Nrf2/ARE binding, and BDNF preservation. Neurotox. Res. 2020;38(4):929– 940. doi: 10.1007/s12640-020-00260-7

78. Cao Q., Zou Q., Zhao X., Zhang Y., Qu Y., Wang N., Murayama S., Qi Q., Hashimoto K., Lin S., Zhang J.C. Regulation of BDNF transcription by Nrf2 and MeCP2 ameliorates MPTP-induced neurotoxicity. Cell Death Discov. 2022;8(1):267. doi: 10.1038/s41420-022-01063-9


Review

Views: 30

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)