Targeting the feminized nature of prostate cancer exploring estrogen-driven metabolic reprogramming and its therapeutic intervention: A narrative review
https://doi.org/10.18699/SSMJ20250502
Abstract
Prostate cancer (PCa) has long been classified as an androgendriven malignancy; however, mounting evidence underscores the pivotal role of estrogen in its initiation, progression, and therapeutic resistance. This review establishes that PCa exhibits intrinsic estrogen dependence through intratumoral aromatization, positioning it within the spectrum of estrogendriven malignancies. Through integrative molecular analyses, we elucidate how estrogen orchestrates metabolic reprogramming, shifting prostate tumors toward enhanced lipid oxidation and glucose uptake a hallmark of glucolipotoxicity. Mechanistically, estrogen signaling, primarily via the PI3K/AKT pathway, drives the upregulation of carnitine palmitoyltransferase 1 and glucose transporter 1, fueling a metabolic storm characterized by oxidative stress, mitochondrial dysfunction, and chronic inflammatory signaling. This metabolic adaptation enables androgenindependent survival, presenting a critical vulnerability overlooked by conventional androgentargeted therapies. Our findings necessitate a paradigm shift in the classification and treatment of PCa, advocating for a novel therapeutic framework targeting the estrogen–metabolic axis. We propose a precision strategy integrating aromatase inhibition, estrogen receptor blockade, and metabolic stress modulation to counteract castrationresistant disease. Recognizing PCa as an estrogendriven, metabolically adaptive malignancy transforms its clinical understanding and therapeutic approach, demanding urgent reconsideration of current oncologic paradigms.
About the Authors
M. M. AklEgypt
35516, Mansoura, Elgomhouria st., 25
A. Ahmed
Saudi Arabia
13524, Riyadh, King Fahd Rd., 4499
References
1. Popoviciu M.S., Kaka N., Sethi Y., Patel N., Chopra H., Cavalu S. Type 1 diabetes mellitus and autoimmune diseases: a critical review of the association and the application of personalized medicine. J. Pers. Med. 2023;13(3):422. doi: 10.3390/jpm13030422
2. Roy S., Pokharel P., Piganelli J.D. Decoding the immune dance: unraveling the interplay between beta cells and type 1 diabetes. Mol. Metab. 2024;88:101998. doi: 10.1016/j.molmet.2024.101998
3. Mahadevan V. Anatomy of the pancreas and spleen. Surgery (Oxford). 2019;37(6):297–301. doi: 10.1016/j.mpsur.2019.04.008
4. Ravi P.K., Singh S.R., Mishra P.R. Redefining the tail of pancreas based on the islets microarchitecture and inter-islet distance: an immunohistochemical study. Medicine. 2021;100(17):e25642. doi: 10.1097/MD.0000000000025642
5. Yung S., Chan T.M. Pathophysiological changes to the peritoneal membrane during PD-related peritonitis: the role of mesothelial cells. Mediators Inflamm. 2012;2012:484167. doi: 10.1155/2012/484167
6. Yung S., Chan T.M. Pathophysiology of the peritoneal membrane during peritoneal dialysis: the role of hyaluronan. J. Biomed. Biotechnol. 2011;2011:180594. doi: 10.1155/2011/180594
7. Komai T., Inoue M., Okamura T., Morita K., Iwasaki Y., Sumitomo S., Shoda H., Yamamoto K., Fujio K. Transforming growth factor-β and interleukin-10 synergistically regulate humoral immunity via modulating metabolic signals. Front. Immunol. 2018;9:1364. doi: 10.3389/fimmu.2018.01364
8. Taylor A., Verhagen J., Blaser K., Akdis M., Akdis C.A. Mechanisms of immune suppression by interleukin-10 and transforming growth factor-beta: the role of T regulatory cells. Immunology. 2006;117(4):433–442. doi: 10.1111/j.1365-2567.2006.02321.x
9. Xie L., Fang J., Yu J., Zhang W., He Z., Ye L., Wang H. The role of CD4+ T cells in tumor and chronic viral immune responses. MedComm. (2020). 2023;4(5):e390. doi: 10.1002/mco2.390
10. Hay Z.L.Z., Slansky J.E. Granzymes: the molecular executors of immune-mediated cytotoxicity. Int. J. Mol. Sci. 2022;23(3):1833. doi: 10.3390/ijms23031833
11. Hampe C.S. B cell in autoimmune diseases. Scientifica (Cairo). 2012;2012:215308. doi: 10.6064/2012/215308
12. Fusco W., Lorenzo M.B., Cintoni M., Porcari S., Rinninella E., Kaitsas F., Lener E., Mele M.C., Gasbarrini A., Collado M.C., Cammarota G., Ianiro G. Shortchain fatty-acid-producing bacteria: key components of the human gut microbiota. Nutrients. 2023;15(9):2211. doi: 10.3390/nu15092211
13. Deleu S., Machiels K., Raes J., Verbeke K., Vermeire S. Short chain fatty acids and its producing organisms: an overlooked therapy for IBD? EBioMedicine. 2021;66:103293. doi: 10.1016/j.ebiom.2021.103293
14. Popko K., Gorska E., Stelmaszczyk-Emmel A., Plywaczewski R., Stoklosa A., Gorecka D., Pyrzak B., Demkow U. Proinflammatory cytokines Il-6 and TNF-α and the development of inflammation in obese subjects. Eur. J. Med. Res. 2010;15(Suppl 2):120–122. doi: 10.1186/2047-783x-15-s2-120
15. Kuo W.T., Odenwald M.A., Turner J.R., Zuo L. Tight junction proteins occludin and ZO-1 as regulators of epithelial proliferation and survival. Ann. N. Y. Acad. Sci. 2022;1514(1):21–33. doi: 10.1111/nyas.14798
16. Kunin M., Beckerman P. The peritoneal membrane—a potential mediator of fibrosis and inflammation among heart failure patients on peritoneal dialysis. Membranes (Basel). 2022;12(3):318. doi: 10.3390/membranes12030318
17. Zebda N., Dubrovskyi O., Birukov K.G. Focal adhesion kinase regulation of mechanotransduction and its impact on endothelial cell functions. Microvasc. Res. 2012;83(1):71–81. doi: 10.1016/j.mvr.2011.06.007
18. Calderon B., Carrero J.A., Unanue E.R. The central role of antigenpresentation in islets of Langerhans in autoimmune diabetes. Curr. Opin. Immunol. 2014;26:32–40. doi: 10.1016/j.coi.2013.10.011
19. Burrack A.L., Martinov T., Fife B.T. T cellmediated beta cell destruction: autoimmunity and alloimmunity in the context of type 1 diabetes. Front. Endocrinol. (Lausanne). 2017;8:343. doi: 10.3389/fendo.2017.00343
20. Chung S.S., Wu Y., Okobi Q., Adekoya D., Atefi M., Clarke O., Dutta P., Vadgama J.V. Proinflammatory cytokines IL-6 and TNF-α increased telomerase activity through NF-κB/STAT1/STAT3 activation, and withaferin A inhibited the signaling in colorectal cancer cells. Mediators Inflamm. 2017;2017:5958429. doi: 10.1155/2017/5958429
21. Su L.J., Zhang J.H., Gomez H., Murugan R., Hong X., Xu D., Jiang F., Peng Z.Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid. Med. Cell. Longev. 2019;2019:5080843. doi: 10.1155/2019/5080843
22. Dandona P. Semaglutide in early type 1 diabetes. N. Engl. J. Med. 2023;389(10):958–959. doi: 10.1056/NEJMc2302677
23. Abdulrahman S., Ibrahim A.A., Mohamed M.A., Gameraddin M., Alelyani M. Sonographic evaluation of the pancreas in type 1 diabetes mellitus: a case-control study. J. Med. Ultrasound. 2021;29(3):167–170. doi: 10.4103/JMU.JMU_89_20
24. Kim S.S., Hudgins A.D., Yang J., Zhu Y., Tu Z., Rosenfeld M.G., DiLorenzo T.P., Suh Y. A comprehensive integrated post-GWAS analysis of type 1 diabetes reveals enhancer-based immune dysregulation. PLoS One. 2021;16(9):e0257265. doi: 10.1371/journal. pone.0257265
25. Shi Y., Zhao Y.Z., Jiang Z., Wang Z., Wang Q., Kou L., Yao Q. Immune-protective formulations and process strategies for improved survival and function of transplanted islets. Front. Immunol. 2022;13:923241. doi: 10.3389/fimmu.2022.923241
26. Doyle M.E., Egan J.M. Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol. Ther. 2007;113(3):546–593. doi: 10.1016/j.pharmthera.2006.11.007
27. Qian S., Wei Z., Yang W., Huang J., Yang Y., Wang J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front. Oncol. 2022;12:985363. doi: 10.3389/fonc.2022.985363
28. Mehdi S.F., Pusapati S., Anwar M.S., Lohana D., Kumar P., Nandula S.A., Nawaz F.K., Tracey K., Yang H., LeRoith D., Brownstein M.J., Roth J. Glucagonlike peptide-1: a multi-faceted anti-inflammatory agent. Front. Immunol. 2023;14:1148209. doi: 10.3389/fimmu.2023.1148209
29. Lee-Chang C., Lesniak M.S. Next-generation antigen-presenting cell immune therapeutics for gliomas. J. Clin. Invest. 2023;133(3):e163449. doi: 10.1172/JCI163449
30. Heise T., Nosek L., Bøttcher S.G., Hastrup H., Haahr H. Ultra-long-acting insulin degludec has a flat and stable glucose-lowering effect in type 2 diabetes. Diabetes Obes. Metab. 2012;14(10):944–950. doi: 10.1111/j.1463-1326.2012.01638.x
31. Ahmed A., Akl M.M. Exploring a synergistic approach: dual GLP1 agonist combined with degludec basal insulin for early type 1 diabetes treatment and its impact on albumin-insulin producing cells expression. Adv. Pharm. Bull. 2024;14(2):262–265. doi: 10.34172/ apb.2024.040
32. Merimi M., El-Majzoub R., Lagneaux L., Moussa Agha D., Bouhtit F., Meuleman N., Fahmi H., Lewalle P., Fayyad-Kazan M., Najar M. The therapeutic potential of mesenchymal stromal cells for regenerative medicine: current knowledge and future understandings. Front. Cell Dev. Biol. 2021;9:661532. doi: 10.3389/fcell.2021.661532
33. Jiang W., Xu J. Immune modulation by mesenchymal stem cells. Cell Prolif. 2020;53(1):e12712. doi: 10.1111/cpr.12712
34. Yang S., Shi J., Qiao Y., Teng Y., Zhong X., Wu T., Liu C., Ge J., Yang H., Zou J. Harnessing anti-inflammatory and regenerative potential: GelMA hydrogel loaded with IL-10 and kartogenin for intervertebral disc degeneration therapy. ACS Biomater. Sci. Eng. 2025;11(3):1486–1497. doi: 10.1021/acsbiomaterials.4c01864
35. Stolfi C., Maresca C., Monteleone G., Laudisi F. Implication of intestinal barrier dysfunction in gut dysbiosis and diseases. Biomedicines. 2022;10(2):289. doi: 10.3390/biomedicines10020289
36. Fercana G.R., Yerneni S., Billaud M., Hill J.C., VanRyzin P., Richards T.D., Sicari B.M., Johnson S.A., Badylak S.F., Campbell P.G., Gleason T.G., Phillippi J.A. Perivascular extracellular matrix hydrogels mimic native matrix microarchitecture and promote angiogenesis via basic fibroblast growth factor. Biomaterials. 2017;123:142–154. doi: 10.1016/j.biomaterials.2017.01.037
37. Moreno-Vicente J., Willoughby J.E., Taylor M.C., Booth S.G., English V.L., Williams E.L., Penfold C.A., Mockridge C.I., Inzhelevskaya T., Kim J., … Beers S.A. Fc-null anti-PD-1 monoclonal antibodies deliver optimal checkpoint blockade in diverse immune environments. J. Immunother. Cancer. 2022;10(1):e003735. doi: 10.1136/jitc-2021-003735
38. Dong Q.M., Ling C., Chen X., Zhao L.I. Inhibition of tumor necrosis factor-α enhances apoptosis induced by nuclear factor-κB inhibition in leukemia cells. Oncol. Lett. 2015;10(6):3793–3798. doi: 10.3892/ol.2015.3786
39. Han Y., Liu D., Li L. PD-1/PD-L1 pathway: current researches in cancer. Am. J. Cancer Res. 2020;10(3):727–742.
40. Lemos J.R.N., Hirani K., von Herrath M. Immunological and virological triggers of type 1 diabetes: insights and implications. Front. Immunol. 2024;14:1326711. doi: 10.3389/fimmu.2023.1326711
41. Morran M.P., Vonberg A., Khadra A., Pietropaolo M. Immunogenetics of type 1 diabetes mellitus. Mol. Aspects Med. 2015;42:42–60. doi: 10.1016/j.mam.2014.12.004
42. Liu R., Zhang L., Gao S., Chen L., Wang L., Zhu Z., Lu W., Zhu H. Gastrointestinal symptom due to lupus peritonitis: a rare form of onset of SLE. Int. J. Clin. Exp. Med. 2014;7(12):5917–5920.
43. Fallatah H.I., Akbar H.O. Autoimmune hepatitis as a unique form of an autoimmune liver disease: immunological aspects and clinical overview. Autoimmune Dis. 2012;2012:312817. doi: 10.1155/2012/312817
44. Ramos G.P., Papadakis K.A. Mechanisms of disease: inflammatory bowel diseases. Mayo Clin. Proc. 2019;94(1):155–165. doi: 10.1016/j.mayocp.2018.09.013
Review
JATS XML






























