Preview

Сибирский научный медицинский журнал

Advanced search

Time in ranges and glucose variability in patients with type 2 diabetes on different regimens of insulin therapy

https://doi.org/10.18699/SSMJ20250523

Abstract

Insulin is used in the treatment of a significant proportion of patients with type 2 diabetes (T2D), while many patients do not achieve glycemic control targets. Aim of the study was to assess the achievability of target parameters of time in ranges and glucose variability (GV) in hospitalized patients with T2D during insulin therapy adjustment under the control of continuous glucose monitoring (CGM) and to determine factors influencing these parameters.

Material and methods. A retrospective comparative single-center study was conducted in real world settings. Patients were divided into 3 groups: 1) basal insulin (BI) therapy; 2) pre-mixed insulin (PMI) therapy; 3) basal-bolus insulin therapy (BBIT) in the mode of multiple daily injections. Time in the target range (TIR), time in the range above and below the target (TAR L-1, TAR L-2, TBR-L1, TBR L-2), coefficient of variability (CV), mean amplitude of glucose excursions (MAGE), lability index (LI), and mean absolute glucose rate of change (MAG) were derived from CGM recordings.

Results. The study recruited 371 patients (167 were on BI, 40 on PMI, and 164 on BBIT). The mean glucose level, TIR, TBR, and TAR L-1 did not differ between three groups. TAR L-2 values and GV indices (CV, MAGE, LI) were higher in patients on BBIT than in those on BI. Patients on PMI did not show significant differences from other groups. In multivariate regression analysis, C-peptide level turned out to be an independent predictor of CV, MAGE, and LI; body mass index was associated with MAG and LI.

Conclusions. Correction of insulin therapy under the CGM control allows achieving target glucose values in most patients with T2D. Patients on BBIT have higher GV than those on BI at similar TIR. The GV parameters in patients with T2D on insulin therapy are inversely associated with endogenous insulin secretion (C-peptide level).

About the Authors

V. V. Klimontov
Research Institute of Clinical and Experimental Lymphology – Branch of the Federal Research Center Institute of Cytology and Genetics of SB RAS; Novosibirsk State University
Russian Federation

Vadim V. Klimontov, doctor of medical sciences, professor of the RAS

630060, Novosibirsk, Arbuzova st., 6

630090, Novosibirsk, Pirogova st., 2



S. A. Yakovleva
Research Institute of Clinical and Experimental Lymphology – Branch of the Federal Research Center Institute of Cytology and Genetics of SB RAS; Novosibirsk State University
Russian Federation

Sophia A. Yakovleva

630060, Novosibirsk, Arbuzova st., 6

630090, Novosibirsk, Pirogova st., 2



Yu. F. Semenova
Research Institute of Clinical and Experimental Lymphology – Branch of the Federal Research Center Institute of Cytology and Genetics of SB RAS
Russian Federation

Yulia F. Semenova, candidate of medical sciences

630060, Novosibirsk, Arbuzova st., 6



E. A. Koroleva
Research Institute of Clinical and Experimental Lymphology – Branch of the Federal Research Center Institute of Cytology and Genetics of SB RAS
Russian Federation

Elena A. Koroleva, candidate of medical sciences

630060, Novosibirsk, Arbuzova st., 6 



D. M. Bulumbaeva
Research Institute of Clinical and Experimental Lymphology – Branch of the Federal Research Center Institute of Cytology and Genetics of SB RAS
Russian Federation

Dinara M. Bulumbaeva, candidate of medical sciences

630060, Novosibirsk, Arbuzova st., 6



K. R. Mavlyanova
Research Institute of Clinical and Experimental Lymphology – Branch of the Federal Research Center Institute of Cytology and Genetics of SB RAS
Russian Federation

Kamilla R. Mavlyanova

630060, Novosibirsk, Arbuzova st., 6



References

1. American Diabetes Association Professional Practice Committee. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes-2025. Diabetes Care. 2025;48(1 Suppl 1):S181– S206. doi: 10.2337/dc25-S009

2. Pitak P., Tasai S., Kumpat N., Na Songkla P., Fuangchan A., Krass I., Dhippayom T. The prevalence of glycemic control in patients with type 2 diabetes treated with insulin: a systematic review and meta-analysis. Public Health. 2023;225:218–228. doi: 10.1016/j.puhe.2023.10.015

3. Klimontov V.V. Predictors of success and failure in achieving glycemic control targets in patients with type 2 diabetes on basal insulin: review of the real-world evidence studies. Sakharnyy diabet = Diabetes Mellitus. 2022;25(6):556–563. [In Russian]. doi: 10.14341/ DM12950

4. Huang Y., Wang Y., Liu C., Zhou Y., Wang X., Cheng B., Kui C., Wang Y. C-peptide, glycaemic control, and diabetic complications in type 2 diabetes mellitus: A real-world study. Diabetes Metab. Res. Rev. 2022;38(4):e3514. doi: 10.1002/dmrr.3514

5. Semenova J.F., Yushin A.Y., Korbut A.I., Klimontov V.V. Glucose variability in people with type 1 diabetes: associations with body weight, body composition, and insulin sensitivity. Biomedicines. 2024;12(9):2006. doi: 10.3390/biomedicines12092006

6. Battelino T., Danne T., Bergenstal R.M., Amiel S.A., Beck R., Biester T., Bosi E., Buckingham B.A., Cefalu W.T., Close K.L., … Phillip M. Clinical targets for continuous glucose monitoring data interpretation: recommendations from the inter national consensus on time in range. Diabetes Care. 2019;42(8):1593–1603. doi: 10.2337/dci19-002

7. Klimontov V.V., Berikov V.B., Sayk O.V., Korbut A.I., Semenova Yu.F., Kladov D.I. Digital diabetology. Novosibirsk, 2022. 250 p. [In Russian].

8. Dedov I.I., Shestakova M.V., Mayorova A.Yu., Mokrysheva N.G., Andreeva E.N., Bezlepkina O.B., Peterkova V.A., Artemova E.V., Bardiugov P.S., Beshlieva D.D., … Yaroslavtseva M.V. Standards of Specialized Diabetes Care. 11th Edition. Sakharnyy diabet = Diabetes mellitus. 2023;26(2S):1–157. [In Russian]. doi: 10.14341/DM20232S

9. Zhang Z., Zhao L., Lu Y., Xiao Y., Zhou X. Insulin resistance assessed by estimated glucose disposal rate and risk of incident cardiovascular diseases among individuals without diabetes: findings from a nationwide, population based, prospective cohort study. Cardiovasc. Diabetol. 2024;23(1):194. doi: 10.1186/s12933-024-02256-5

10. Batule S., Ramos A., Pérez-Montes de Oca A., Fuentes N., Martínez S., Raga J., Pena X., Tural C., Muñoz P., Soldevila B., … Puig-Domingo M. Comparison of glycemic variability and hypoglycemic events in hospitalized older adults treated with basal insulin plus vildagliptin and basal-bolus insulin regimen: a prospective randomized study. J. Clin. Med. 2022;11(10):2813. doi: 10.3390/jcm11102813

11. Christensen M.B., Gæde P., Hommel E., Gotfredsen A., Nørgaard K. Glycaemic variability and hypoglycaemia are associated with C-peptide levels in insulin-treated type 2 diabetes. Diabetes Metab. 2020;46(1):61–65. doi: 10.1016/j.diabet.2019.02.002

12. Klimontov V.V., Tsiberkin A.I., Fazullina O.N., Prudnikova M.A., Tyan N.V., Konenkov V.I. Hypoglycemia in type 2 diabetes patients treated with insulin: the advantages of continuous glucose monitoring. Sakharnyy diabet = Diabetes Mellitus. 2014;17(1):75– 80. [In Russian]. doi: 10.14341/DM2014175-80

13. Klimontov V.V. Impact of glycemic variability on cardiovascular risk in diabetes. Kardiologiya = Cardiology. 2018;58(10):80–87. [In Russian]. doi: 10.18087/cardio.2018.10.10152

14. Martinez M., Santamarina J., Pavesi A., Musso C., Umpierrez G.E. Glycemic variability and cardiovascular disease in patients with type 2 diabetes. BMJ Open Diabetes Res. Care. 2021;9(1):e002032. doi: 10.1136/bmjdrc-2020-002032

15. Bonora B.M., Rigato M., Frison V., D’Ambrosio M., Tadiotto F., Lapolla A., Simioni N., Paccagnella A., Avogaro A., Fadini G.P. Deintensification of basal-bolus insulin after initiation of GLP-1RA in patients with type 2 diabetes under routine care. Diabetes Res. Clin. Pract. 2021;173:108686. doi: 10.1016/j.diabres.2021.108686

16. Ando Y., Shigiyama F., Hirose T., Kumashiro N. Simplification of complex insulin regimens using canagliflozin or liraglutide in patients with well-controlled type 2 diabetes: A 24-week randomized controlled trial. J. Diabetes Investig. 2021;12(10):1816– 1826. doi: 10.1111/jdi.13533

17. FLAT-SUGAR Trial Investigators. Glucose Variability in a 26-Week Randomized Comparison of Mealtime Treatment With Rapid-Acting Insulin Versus GLP-1 Agonist in Participants With Type 2 Diabetes at High Cardiovascular Risk. Diabetes Care. 2016;39(6):973–981. doi: 10.2337/dc15-2782

18. Aronson R., Umpierrez G., Stager W., Kovatchev B. Insulin glargine/lixisenatide fixed-ratio combination improves glycaemic variability and control without increasing hypoglycaemia. Diabetes Obes. Metab. 2019;21(3):726–731. doi: 10.1111/dom.13580

19. Wang H., Zhou Y., Wang Y., Cai T., Hu Y., Jing T., Ding B., Su X., Li H., Ma J. Basal insulin reduces glucose variability and hypoglycaemia compared to premixed insulin in type 2 diabetes patients: a study based on continuous glucose monitoring systems. Front. Endocrinol. (Lausanne). 2022;13:791439. doi: 10.3389/fendo.2022.791439

20. Lin Y.H., Lin C.H., Huang Y.Y., Chen H.Y., Tai A.S., Fu S.C., Hsieh S.H., Sun J.H., Chen S.T., Lin S.H.. Regimen comprising GLP-1 receptor agonist and basal insulin can decrease the effect of food on glycemic variability compared to a pre-mixed insulin regimen. Eur. J. Med. Res. 2022;27(1):273. doi: 10.1186/s40001-022-00892-9

21. Bellido V., Suarez L., Rodriguez M.G., Sanchez C., Dieguez M., Riestra M., Casal F., Delgado E., Menendez E., Umpierrez G.E. Comparison of basal-bolus and premixed insulin regimens in hospitalized patients with type 2 diabetes. Diabetes Care. 2015;38(12):2211–2216. doi: 10.2337/dc15-0160.


Review

Views: 25


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)