Preview

Сибирский научный медицинский журнал

Advanced search

The dual-action monophenolic antioxidant TS-13 accelerates hair coat restoration in a mouse model of chemotherapy-induced alopecia

https://doi.org/10.18699/SSMJ20250518

Abstract

Chemotherapy remains a mainstay in the treatment of malignant neoplasms, and the search for strategies to overcome or mitigate its side effects, including hair loss (CIA, chemotherapy-induced alopecia), remains extremely important. Despite the proven role of oxidative stress in the pathogenesis of CIA, the number of studies on the potential use of antioxidants for its prevention and treatment is limited. The aim of the study was to investigate the effect of the monophenol sodium 3-(3′-tert-butyl-4′-hydroxyphenyl) propylthiosulfonate (TS-13), which possesses direct and indirect antioxidant activity, on hair regrowth in mice modeling CIA.

Material and methods. The study was performed on 30 outbred mice of both sexes, divided into 4 groups. Group 1 animals served as controls (n = 7). Mice in Group 2 received TS-13 in drinking water at a dose of 100 mg/kg body weight starting 14 days before depilation and throughout the experiment (Group “TS-13”, n = 7). CIA was modeled in mice of Group 3 (Group “CIA”, n = 8) and Group 4 (Group “CIA + TS-13”, n = 8). Animals in Group 4 received TS-13 in drinking water throughout the entire experiment. The backs of all animals were shaved, and the treated areas were depilated. On day 9, mice in Groups 3 and 4 received an intraperitoneal injection of cyclophosphamide solution (120 mg/kg body weight). Subsequently, the backs were photographed every other day, and the obtained images were analyzed. On day 51, the animals were euthanized, organs (liver, heart, left kidney, spleen) were extracted and weighed.

Results and discussion. No significant differences in body weight dynamics were observed between the groups during the experiment; only a tendency towards weight loss was detected in males receiving cyclophosphamide on day 17 (p = 0.0662). In mice of the control group and those receiving TS-13 in drinking water, intensive hair growth began on days 11–13 of the experiment, with complete hair regrowth occurring by days 13–15. In animals of the CIA group, the phase of pronounced hair growth was significantly delayed, starting on day 25 and reaching complete regrowth only by day 40. Administration of TS-13 to mice with CIA (Group 4) accelerated the process, although not to the level of the intact control (Group 1, p = 0.015) or the positive control (Group 2, p = 0.002). Rapid hair growth began on day 17, and complete hair regrowth occurred on day 31; the difference compared to Group 3 was statistically significant (p = 0.004).

Conclusions. TS-13 administration accelerates hair regrowth in mice with CIA model, although it does not completely abolish cyclophosphamide’s ability to induce hair loss. We consider the latter a positive outcome, indicating that the substance does not negate the key therapeutic effect of antitumor agents – their antiproliferative action.

About the Authors

E. B. Menshchikova
Federal Research Center of Fundamental and Translational Medicine
Russian Federation

Elena B. Menshchikova, doctor of medical sciences

630117, Novosibirsk, Timakova st., 2



A. E. Serykh
Federal Research Center of Fundamental and Translational Medicine
Russian Federation

Anastasia E. Serykh

630117, Novosibirsk, Timakova st., 2



L. P. Romakh
Federal Research Center of Fundamental and Translational Medicine
Russian Federation

Lidia P. Romakh

630117, Novosibirsk, Timakova st., 2



E. S. Petrova
Federal Research Center of Fundamental and Translational Medicine
Russian Federation

Ekaterina S. Petrova, candidate of technical sciences

630117, Novosibirsk, Timakova st., 2



M. V. Khrapova
Federal Research Center of Fundamental and Translational Medicine
Russian Federation

Marina V. Khrapova, candidate of biological sciences

630117, Novosibirsk, Timakova st., 2



A. V. Chechushkov
Federal Research Center of Fundamental and Translational Medicine
Russian Federation

Anton V. Chechushkov, candidate of medical sciences

630117, Novosibirsk, Timakova st., 2



A. S. Oleynik
Novosibirsk State Pedagogical University
Russian Federation

Alyona S. Oleynik, candidate of chemical sciences

630126, Novosibirsk, Vilyuyskaya st., 28



N. V. Kandalintseva
Novosibirsk State Pedagogical University
Russian Federation

Natalya V. Kandalintseva, doctor of chemical sciences

630126, Novosibirsk, Vilyuyskaya st., 28



References

1. Liao Z., Chua D., Tan N.S. Reactive oxygen species: a volatile driver of field cancerization and metastasis. Mol. Cancer. 2019;18(1):65. doi: 10.1186/s12943-019-0961-y

2. Tiwari R., Mondal Y., Bharadwaj K., Mahajan M., Mondal S., Sarkar A. Reactive oxygen species (ROS) and their profound influence on regulating diverse aspects of cancer: A concise review. Drug Dev. Res. 2025;86(4):e70107. doi: 10.1002/ddr.70107

3. Chen D., Guo Z., Yao L., Sun Y., Dian Y., Zhao D., Ke Y., Zeng F., Zhang C., Deng G., Li L. Targeting oxidative stress-mediated regulated cell death as a vulnerability in cancer. Redox Biol. 2025;84:103686. doi: 10.1016/j.redox.2025.103686

4. Wilson B.E., Jacob S., Yap M.L., Ferlay J., Bray F., Barton M.B. Estimates of global chemotherapy demands and corresponding physician workforce requirements for 2018 and 2040: a populationbased study. Lancet Oncol. 2019;20(6):769–780. doi: 10.1016/S1470-2045(19)30163-9

5. Oun R., Moussa Y.E., Wheate N.J. The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans. 2018;47(19):6645–6653. doi: 10.1039/c8dt00838h

6. Zhou Y.Q., Liu D.Q., Chen S.P., Chen N., Sun J., Wang X.M., Cao F., Tian Y.K., Ye D.W. Nrf2 activation ameliorates mechanical allodynia in paclitaxel-induced neuropathic pain. Acta Pharmacol. Sin. 2020;41(8):1041–1048. doi: 10.1038/s41401-020-0394-6

7. Leskinen S., Alsalek S., Galvez R., Ononogbu-Uche F.C., Shah H.A., Vojnic M., D’Amico R.S. Chemotherapy-related cognitive impairment and changes in neural network dynamics: A systematic review. Neurology. 2025;104(2):e210130. doi: 10.1212/wnl.0000000000210130

8. Reis-Mendes A., Ferreira M., Padrao A.I., Duarte J.A., Duarte-Araujo M., Remiao F., Carvalho F., Sousa E., Bastos M.L., Costa V.M. The role of Nrf2 and inflammation on the dissimilar cardiotoxicity of doxorubicin in two-time points: a cardio-oncology in vivo study through time. Inflammation. 2024;47(1):264– 284. doi: 10.1007/s10753-023-01908-0

9. Wikramanayake T.C., Haberland N.I., Akhundlu A., Laboy Nieves A., Miteva M. Prevention and treatment of chemotherapy-induced alopecia: What is available and what is coming? Curr. Oncol. 2023;30(4):3609–3626. doi: 10.3390/curroncol30040275

10. Aiba T., Kono Y., Etoh T., Kawano Y., Oshima Y., Inomata M. Efficacy of cooling therapy and alpha-lipoic acid derivative against chemotherapyinduced alopecia in an animal model. Cancer Sci. 2023;114(3):1007–1014. doi: 10.1111/cas.15639

11. He M., Jia H. Enhancing access to scalp cooling therapy: How can we move forward? A response to Novice et al’s “the financial burden of scalp cooling therapy: A nonprofit organization data analysis”. J. Am. Acad. Dermatol. 2025; Online ahead of print. doi: 10.1016/j.jaad.2025.03.093

12. Sechi A., Cedirian S., Brunetti T., Quadrelli F., Torres F., Tosti A., Rinaldi F., Pinto D., Bolognino R., Marzano A.V., Piraccini B.M. Safety first: A comprehensive review of nutritional supplements for hair loss in breast cancer patients. Nutrients. 2025;17(9):1451. doi: 10.3390/nu17091451

13. Perez S.M., Vattigunta M., Kelly C., Eber A. Low-level laser and LED therapy in alopecia: A systematic review and meta-analysis. Dermatol. Surg. 2025;51(2):179–183. doi: 10.1097/ DSS.0000000000004442

14. Amaya C., Smith E.R., Xu X.X. Low intensity ultrasound as an antidote to taxane/paclitaxel-induced cytotoxicity. J. Cancer. 2022;13(7):2362–2373. doi: 10.7150/jca.71263

15. Majewski M., Gardas K., Waskiel-Burnat A., Ordak M., Rudnicka L. The role of minoxidil in treatment of alopecia areata: A systematic review and metaanalysis. J. Clin. Med. 2024;13(24):7712. doi: 10.3390/jcm13247712

16. Zhang Y., Jimenez J.J. Mild oxidative stress protects against chemotherapy-induced hair loss. Front. Oncol. 2022;12:1078916. doi: 10.3389/fonc.2022.1078916

17. Menshchikova E.B., Khrapova M.V., Kozhin P.M., Chechushkov A.V., Petrova E.S., Serykh A.E., Romakh L.P., Kandalintseva N.V. Original synthetic monophenolic antioxidant with combined effect inhibits tumor growth in vivo. Sibirskij nauchnyj medicinskij zhurnal = Siberian Scientific Medical Journal. 2024;44(6):128–137. [In Russian]. doi: 10.18699/SSMJ20240612.

18. Menshchikova E.B., Knyazev R.A., Trifonova N.V., Deeva N.A., Kolpakov A.R., Romakh L.P., Kandalintseva N.V. Synthetic antioxidant TS13 reduces the cardiotoxicity of doxorubicin. Cell Tissue Biol. 2024;18(5):570–578. doi: 10.1134/s1990519x24700445

19. Stenn K.S., Paus R. Controls of hair follicle cycling. Physiol. Rev. 2001;81(1):449–494. doi: 10.1152/physrev.2001.81.1.449

20. Paus R., Handjiski B., Eichmuller S., Czarnetzki B.M. Chemotherapy-induced alopecia in mice. Induction by cyclophosphamide, inhibition by cyclosporine A, and modulation by dexamethasone. Am. J. Pathol. 1994;144(4):719–734.

21. Серых А.Е. Интерактивная система обработки изображений с автоматической генерацией отчетов. Cвидетельство о государственной регистрации программы для ЭВМ № 2025613112; опубл. 28.01.2025.

22. Elso C.M., Roberts L.J., Smyth G.K., Thomson R.J., Baldwin T.M., Foote S.J., Handman E. Leishmaniasis host response loci (lmr1-3) modify disease severity through a Th1/Th2-independent pathway. Genes Immun. 2004;5(2):93–100. doi: 10.1038/sj.gene.6364042

23. Hendrix S., Handjiski B., Peters E.M., Paus R. A guide to assessing damage response pathways of the hair follicle: lessons from cyclophosphamide-induced alopecia in mice. J. Invest. Dermatol. 2005;125(1):42– 51. doi: 10.1111/j.0022-202X.2005.23787.x

24. Welle M.M. Basic principles of hair follicle structure, morphogenesis, and regeneration. Vet. Pathol. 2023;60(6):732–747. doi: 10.1177/03009858231176561

25. Chen S.S., Zhang Y., Lu Q.L., Lin Z., Zhao Y. Preventive effects of cedrol against alopecia in cyclophosphamide-treated mice. Environ. Toxicol. Pharmacol. 2016;46:270–276. doi: 10.1016/j.etap.2016.07.020

26. Jadkauskaite L., Coulombe P.A., Schafer M., Dinkova-Kostova A.T., Paus R., Haslam I.S. Oxidative stress management in the hair follicle: Could targeting NRF2 counter age-related hair disorders and beyond? Bioessays. 2017;39(8):1700029. doi: 10.1002/bies.201700029

27. Khrapova M.V., Bryushinina O.S., Zyuzkova Yu.G., Kandalintseva N.V., Menshchikova E.B. New synthetic monophenolic antioxidant TS-13 penetrates the bloodbrain barrier. Sibirskij nauchnyj medicinskij zhurnal = Siberian Scientific Medical Journal. 2023;43(5):127– 134. [In Russian]. doi: 10.18699/SSMJ20230513 28. Perez A.M., Haberland N.I., Miteva M., Wikramanayake T.C. Chemotherapy-induced alopecia by docetaxel: Prevalence, treatment and prevention. Curr Oncol. 2024;31(9):5709–5721. doi: 10.3390/curroncol31090423.


Review

Views: 28


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)