Interrelationships between gut microbiome and serum medium mass molecules in menopausal women
https://doi.org/10.18699/SSMJ20250515
Abstract
During menopause, the composition of the gut microbiota undergoes changes. At the same time, age-related deficiency of sex hormones occurs, which is considered the basis for the development of metabolic disorders, including oxidative and carbonyl stress, and this may be one of the reasons for the change in the medium mass molecules (MMM) content. Aim of the study was to establish the relationship between the MMM level and representatives of the gut microbiota in menopausal women.
Material and methods. The study involved 98 women who met the following criteria: age from 45 to 69 years, amenorrhea or menstrual irregularities, anti-Müllerian hormone level less than 1.2 ng/ml. Exclusion criteria: exacerbation of chronic and presence of infectious diseases, diabetes mellitus, taking antibacterial drugs during the last three months. A quantitative assessment of the state of the gut microflora was performed using the test system Kolonoflor-16 (premium) by PCR. The MMM content was assessed in blood serum by a spectrophotometry at 238, 254, 260 and 280 nm with subsequent calculation of distribution ratio.
Results. The presence of a linear relationship between the MMM content and the gut microbiome composition was revealed: an increase in the total bacterial mass, as well as the content of Bacteroides spp., Roseburia inulinivorans in fecal samples, positively correlates with the MMM level determined at all wavelengths. Bacterial indicators are also associated with distribution ratio 238/260 and 238/280.
Conclusions. In menopausal women, the MMM level is interconnected with the volume of gut microbiota and the content of its individual representatives, however, changes in these indicators cannot be unambiguously interpreted as pathological, since this can be part of natural physiological processes.
About the Authors
N. E. GarashchenkoRussian Federation
Nadezhda E. Garashchenko
664003, Irkutsk, Timiryazeva st., 16
N. V. Semenova
Russian Federation
Natalia V. Semenova, doctor of biological sciences
664003, Irkutsk, Timiryazeva st., 16
N. L. Belkova
Russian Federation
Natalia L. Belkova, candidate of biological sciences
664003, Irkutsk, Timiryazeva st., 16
O. A. Nikitina
Russian Federation
Olga A. Nikitina, candidate of biological sciences
664003, Irkutsk, Timiryazeva st., 16
E. A. Novikova
Russian Federation
Elizaveta A. Novikova
664003, Irkutsk, Timiryazeva st., 16
N. E. Smurova
Russian Federation
Nadezhda E. Smurova
664003, Irkutsk, Timiryazeva st., 16
E. S. Klimenko
Russian Federation
Elizaveta S. Klimenko
664003, Irkutsk, Timiryazeva st., 16
S. I. Kolesnikov
Russian Federation
Sergey I. Kolesnikov, doctor of medical sciences, professor, academician RAS
664003, Irkutsk, Timiryazeva st., 16
A. S. Lesnaya
Russian Federation
Anastasia S. Lesnaya, candidate of biological sciences
664003, Irkutsk, Timiryazeva st., 16
L. I. Kolesnikova
Russian Federation
Lyubov I. Kolesnikova, doctor of medical sciences, professor, academician RAS
664003, Irkutsk, Timiryazeva st., 16
References
1. Fuhrman B.J., Feigelson H.S., Flores R., Gail M.H., Xu X., Ravel J., Goedert J.J. Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women. J. Clin. Endocrinol. Metab. 2014;99(12):4632–4640. doi: 10.1210/jc.2014-2222
2. Flores R., Shi J., Fuhrman B., Xu X., Veenstra T.D., Gail M.H., Gajer P., Ravel J., Goedert J.J. Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. J. Transl. Med. 2012;10:253. doi: 10.1186/1479-5876-10-253
3. Schreurs M.P.H., de Vos van Steenwijk P.J., Romano A., Dieleman S., Werner H.M.J. How the gut microbiome links to menopause and obesity, with possible implications for endometrial cancer development. J. Clin. Med. 2021;10(13):2916. doi: 10.3390/jcm10132916
4. Bradley E., Haran J. The human gut microbiome and aging. Gut Microbes. 2024;16(1):2359677. doi: 10.1080/19490976.2024.2359677
5. Semenova N., Garashchenko N., Kolesnikov S., Darenskaya M., Kolesnikova L. Gut microbiome interactions with oxidative stress: mechanisms and consequences for health. Pathophysiology. 2024;31(3):309– 330. doi: 10.3390/pathophysiology31030023
6. Ni Q., Zhang P., Li Q., Han Z. Oxidative stress and gut microbiome in inflammatory skin diseases. Front. Cell Dev. Biol. 2022;10:849985. doi: 10.3389/fcell.2022.849985
7. Jose S., Bhalla P., Suraishkumar G.K. Oxidative stress decreases the redox ratio and folate content in the gut microbe, Enterococcus durans (MTCC 3031). Sci. Rep. 2018;8(1):12138. doi: 10.1038/s41598-018-30691-4
8. Brichagina A.S., Semenova N.V., Kolesnikova L.I. Age-related menopause and carbonyl stress. Adv. Gerontol. 2022;12(4):456–462. doi: 10.1134/ S2079057022040051
9. Byulleten’ Vostochno-Sibirskogo nauchnogo tsentra Sibirskogo otdeleniya Rossiyskoy akademii meditsinskikh nauk = Bulletin of East Siberian Scientific Center of Siberian Branch of Russian Academy of Medical Sciences. 2014;(2):120–125. [In Russian]
10. Zheng G., Cao J., Wang X.H., He W., Wang B. The gut microbiome, chronic kidney disease, and sarcopenia. Cell Commun. Signal. 2024;22(1):558. doi: 10.1186/s12964-024-01922-1
11. Pshenichnaya E.V., Astaf’eva E.V. The significance of the level of average weight molecules in blood plasma, as an indicator of endogenous intoxication, in predicting glomerulonephritisis in children with hemorrhagic vasculitis. Mat’ i ditya v Kuzbasse = Mother and Baby in Kuzbass. 2024;25(1):66–72. [In Russian]. doi:10.24412/2686-7338-2024-1-66-72
12. Darenskaya M.A., Chugunova E.V., Kolesnikov S.I., Grebenkina L.A., Semenova N.V., Nikitina O.A., Kolesnikova L.I. Indicators of endogenous intoxication and lipid peroxidation in the dynamics of treatment with α -lipoic acid in men with diabetic nephropathy at the stage of microalbuminuria. Klinicheskaya nefrologiya = Clinical Nephrology. 2021;13(3):38–43. [In Russian]. doi: 10.18565/nephrology.2021.3.38-43
13. Prokofieva T.V., Polunina O.S., Polunina E.A., Sevostyanova I.V., Voronina P.N. Assessment of endogenous intoxication based on the study of medium and low molecular weight substances in patients with myocardial infarction against a background of chronic obstructive pulmonary disease. Klinicheskaya nefrologiya = Clinical Nephrology. 2022;(17):106–115. [In Russian]. doi: 10.21518/2079-701X-2022-16-17-106-115
14. Semenova N.V., Nikitina O.A., Novikova E.A., Karacheva A.N., Marianian A.Yu., Kolesnikov S.I., Labygina A.V., Kolesnikova L.I. Indicators of endogenous intoxication in uncomplicated pregnancy. Mediumweight molecules and lipid peroxidation products. Bull. Exp. Biol. Med. 2025;178(5):643–646. doi: 10.1007/s10517-025-06390-2
15. Nongnuch A., Kitiyakara C., Sappadungsuk S., Sathirapongsasuti N., Vipattawat K., Zhang P., Davies N., Davenport A. Pilot study to investigate differences in middle molecules, oxidative stress and markers of peripheral vascular disease in patients treated by high flux haemodialysis and haemodiafiltration. PLoS ONE. 2021;16(10):e0258223. doi: 10.1371/journal.pone.0258223
16. Barsukova M.A., Dmitriev L.S., Yakubenko E.D., Khomutov E.V. Optimization of the protein deposition regime in determining average mass molecules as a marker of endogenous intoxication. Universitetskaya klinika = University Clinic. 2021;(1):46. [In Russian]. doi: 10.26435/uc.v0i1(38).656
17. Belskaya L.V., Kosenok V.K., Massard Zh., Zav’yalov A.A. Status indicators of lipid peroxidation and endogenous intoxication in lung cancer patients. Vestnik Rossiyskoy akademii meditsinskikh nauk = Annals of the Russian Academy of Medical Sciences. 2016;71(4):313–322. [In Russian]. doi: 10.15690/vramn712
18. Gavrilov V.B., Bidula M.M., Furmanchuk D.A., Konev S.V., Aleinikova O.V. Evaluation of intoxication of the body by the imbalance between the accumulation and binding of toxins in the blood plasma. Klinicheskaya laboratornaya diagnostika = Russian Clinical Laboratory Diagnostics. 1999;(2):13–17. [In Russian]
19. Ling Z., Liu X., Cheng Y., Yan X., Wu S. Gut microbiota and aging. Crit. Rev. Food Sci. Nutr. 2022;62(13):3509–3534. doi: 10.1080/10408398.2020.1867054
20. Fernandez-Cantos M.V., Babu A.F., Hanhineva K., Kuipers O.P. Identification of metabolites produced by six gut commensal Bacteroidales strains using non-targeted LC-MS/MS metabolite profiling. Microbiol. Res. 2024;283:1–11. doi: 10.1016/j.micres.2024.127700
21. Yudakova O.V., Grigoryev E.V. The intensity of lipid peroxidation and of antioxidant activity and the level of average-weight molecules as indicators of endogenous intoxication in generalized peritonitis. Klinicheskaya laboratornaya diagnostika = Russian Clinical Laboratory Diagnostics. 2004;(10):20. [In Russian].
22. Tomás-Pejó E., González-Fernández C., Greses S., Kennes C., Otero-Logilde N., Veiga M.C., Bolzonella D., Müller B., Passoth V. Production of short-chain fatty acids (SCFAs) as chemicals or substrates for microbes to obtain biochemicals. Biotechnol. Biofuels Bioprod. 2023;16(1):96. doi: 10.1186/s13068- 023-02349-5. doi: 10.1186/s13068-023-02349-5
23. Wang J., Zhu N., Su X., Gao Y., Yang R. Gutmicrobiota-derived metabolites maintain gut and systemic immune homeostasis. Cells. 2023;12(5):793. doi: 10.3390/cells12050793.






























