Preview

Сибирский научный медицинский журнал

Advanced search

Variant anatomy of three-dimensional models of the brachial plexus in augmented and virtual reality

https://doi.org/10.18699/SSMJ20250514

Abstract

Modern surgical principles for repairing damaged nerves in brachial plexus injuries require individual and high-quality surgical planning based on the anatomy of a particular patient, as well as precise navigation during surgery. The aim of the study is to identify the correspondence of the variants of the brachial plexus structure on drugs and three– dimensional models for their use in augmented and virtual reality.

Material and methods. 44 three-dimensional digital and polymer models of the right brachial plexuses were created from 22 corpses of men and women aged 39–89 years. The accuracy of the reconstruction was verified by determining the structural variant of the brachial plexus in the preparations and three-dimensional models.

Results and discussion. The created three-dimensional digital and polymer models accurately reflect the structural variants of brachial plexus preparations, but not equally in the presence or absence of epineurium. At the epineural level, 7 variants of the structure of preparations and three–dimensional models of the brachial plexus were identified, and 4 at the perineural level. The identified variants differ in the number of spinal nerves and the structural features of the divisions of the middle and lower trunks. All three-dimensional digital models of the brachial plexus have been converted to the STL format and projected onto the surface of the human body using augmented reality and virtual reality to different depths of the digital twin.

Conclusions. The created database of 44 three-dimensional digital and polymer models of 7 variants of the brachial plexus structure at the epineural and 4 at the perineural levels, projecting them onto a specific patient or a digital twin, allows performing operations in augmented and virtual reality conditions.

About the Authors

N. S. Gorbunov
Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of Minzdrav of Russia; Research Institute of Medical Problems of the North of Krasnoyarsk Scientific Center of SB RAS
Russian Federation

Nikolay S. Gorbunov, doctor of medical sciences, professor

660022, Krasnoyarsk, Partizana Zheleznyaka st., 1

660022, Krasnoyarsk, Partizana Zheleznyaka st., 3



K. V. Kober
Krasnoyarsk Regional Clinical Oncological Dispensary named after A.I. Kryzhanovsky
Russian Federation

Kristina V. Kober, candidate of medical sciences

660133, Krasnoyarsk, 1st Smolenskaya st., 16



E. V. Kasparov
Research Institute of Medical Problems of the North of Krasnoyarsk Scientific Center of SB RAS
Russian Federation

Eduard V. Kasparov, doctor of medical sciences, professor

660022, Krasnoyarsk, Partizana Zheleznyaka st., 3



S. I. Rostovtsev
Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of Minzdrav of Russia
Russian Federation

Sergey I. Rostovtsev, doctor of medical sciences

660022, Krasnoyarsk, Partizana Zheleznyaka st., 1



D. N. Gorbunov
Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of Minzdrav of Russia
Russian Federation

Dmitry N. Gorbunov, candidate of medical sciences

660022, Krasnoyarsk, Partizana Zheleznyaka st., 1



D. N. Lebedeva
Irkutsk State Medical University of Minzdrav of Russia
Russian Federation

Darya N. Lebedeva

664003, Irkutsk, Krasnogo Vosstaniya st., 1



O. P. Galeeva
Irkutsk State Medical University of Minzdrav of Russia
Russian Federation

Olga P. Galeeva

664003, Irkutsk, Krasnogo Vosstaniya st., 1



References

1. Moldovanu C.G. Virtual and augmented reality systems and three-dimensional printing of the renal modeldnovel trends to guide preoperative planning for renal cancer. Asian J. Urol. 2024;11(4);521–529. doi: 10.1016/j.ajur.2023.10.004

2. Boul-Atarass I.L., Franco C.C., Sierra J.D.S., Monsalve J.C., Ruiz J.P. Virtual 3D models, augmented reality systems and virtual laparoscopic simulations in complicated pancreatic surgeries: state of art, future perspectives, and challenges. Int. J. Surg. 2025;111(3):2613–2623. doi: 10.1097/JS9.0000000000002231

3. Sullivan J., Skladman R., Varagur K. Tenenbaum E., Sacks J.L., Martin C., Gordon T., MurphyJ., Moritz W.R., Sacks J.M. from augmented to virtual reality in plastic surgery: blazing the trail to a new frontier. J. Reconstr. Microsurg. 2024;40(5):398–406. doi: 10.1055/ a-2199-3870

4. Barcali E., Iadanza E., Manetti L., Francia P., Nardi C., Bocchi L. Augmented reality in surgery: a scoping review. Appl. Sci. 2022;12(14):6890. doi: 10.3390/app12146890

5. Ock J., Moon S., Kim M., Ko B.S., Kim N. Evaluation of the accuracy of an augmented reality-based tumor-targeting guide for breast-conserving surgery. Comput. Methods Programs Biomed. 2024;245:108002. doi: 10.1016/j.cmpb.2023.108002

6. Naito K., Ohana M., Lequint T., Facca S., Liverneaux Ph. Brachial Plexus. In: Telemicrosurgery: robot assisted microsurgery. Paris: Springer, 2012. P. 123–136. doi: 10.1007/978-2-8178-0391-3

7. Gilcrease-Garcia B.M., Deshmukh S.D., Parsons M.S. Anatomy, imaging, and pathologic conditions of the brachial plexus. RadioGraphics. 2020;40(6):1686– 1714. doi: 10.1148/rg.2020200012

8. Gesslbauer B., Hruby L.A., Roche A.D., Farina D., Blumer R., Aszmann O.C. Axonal components of nerves innervating the human arm. Ann. Neurol. 2017;82(3):396–408. doi: 10.1002/ana.25018

9. Davidson E.J., Tan E.T., Pedrick E.G., Sneag D.B. Brachial plexus magnetic resonance neurography technical challenges and solutions. Invest. Radiol. 2023;58(1):14–27. doi: 10.1097/RLI.0000000000000906

10. Riedel P., Riesner M., Wendt K., Assmann U. Data-Driven Digital Twins in Surgery utilizing Augmented Reality and Machine Learning: proc. conf., 2022 IEEE International Conference on Communications Workshops (ICC Workshops), IEEE; 2022. P. 580–585. doi: 10.1109/ICCWorkshops53468.2022.9814537

11. Shekouhi R., Chim H. Patient demographics, tumor characteristics, and outcomes following surgical treatment of benign and malignant brachial plexus tumors: a systematic review. Int. J. Surg. 2023;109(4):972– 981. doi: 10.1097/JS9.0000000000000309

12. Zhao X., Zhao H., Zheng W., Gohritz A., Shen Y., Xu W. Clinical evaluation of augmented reality-based 3D navigation system for brachial plexus tumor surgery. World J. Surg. Oncol. 2024;22(1):20. doi: 10.1186/s12957-023-03288-z

13. Zhang Y., Li X., Liu Y., Sun Y., Duan L., Zhang Y., Shi R., Yu X., Peng Zh. 3D SHINKEI MR neurography in evaluation of traumatic brachial plexus. Sci. Rep. 2024;14(1):6268. doi: 10.1038/s41598-024-57022-0

14. Chaker S.C., Reddy A.P., King D., Manzanera E.I.V. Thayer W.P. Diffusion tensor imaging techniques and applications for peripheral nerve injury. Ann. Plast. Surg. 2024;93(3S):S113–S115. doi: 10.1097/SAP.0000000000004055

15. Colucci P.G., Gao M.A., Tan E.T., Queler S., Belanger M., Tsai J., Carrino J.A., Sneag D.B. Development of an interactive ultra-high resolution magnetic resonance neurography atlas of the brachial plexus and upper extremity peripheral nerves. Clin. Imaging. 2025;119:110400. doi: 10.1016/j.clinimag.2024.110400

16. van Hoof T., Gomes G.T., Audenaert E., Verstraete K., Kerckaert I., D’herde K. 3D computerized model for measuring strain and displacement of the brachial plexus following placement of reverse shoulder prosthesis. Anat. Rec. (Hoboken). 2008;291(9):1173– 1185. doi: 10.1002/ar.20735

17. van de Velde J., Bogaert S., Vandemaele P., Huysse W., Achten E., Leijnse J. De Neve W., van Hoof T. Brachial plexus 3D reconstruction from MRI with dissection validation: a baseline study for clinical applications. Surg. Radiol. Anat. 2016;38:229–236. doi: 10.1007/s00276-015-1549-x

18. Perruisseau-Carrier A., Bahlouli N., Bierry G., Vernet P., Facca S., Liverneaux P. Comparison between isotropic linear-elastic law and isotropic hyperelastic law in the finite element modeling of the brachial plexus. Ann. Chirurg. Plast. Esthét. 2017;62(6):664–668. doi: 10.1016/j.anplas.2017.03.002

19. Wake N., Lin Y., Ek Tan T., Sneag D.B., Ianucci S., Fung M. 3D printing of the brachial plexus and its osseous landmarks using magnetic resonance neurography for thoracic outlet syndrome evaluation. J. 3D Print. Med. 2024;10(1):36. doi: 10.1186/s41205-024-00239-6

20. Rosen J.M., Hong J., Klaudt-Moreau J., Podsednik A., Hentz V.R. Frontiers of brachial plexus injury: future revolutions in the field. In: Brachial Plexus Injury – New Techniques and Ideas. London, 2022. P. 145–163. doi: 10.5772/intechopen.99209

21. Gorbunov N.S., Kober K.V., Kasparov E.V., Rostovtsev S.I. Variant anatomy and codes of the human brachial plexus. Kazanskiy meditsinskiy zhurnal = Kazan Medical Journal. 2023;104(1):62–71. [In Russian]. doi: 10.17816/KMJ106979

22. Reina M.A., Boezaart A.P., Tubbs R.S., Zasimovich Y., Fernández-Domínguez M., Fernández P., Sala-Blanch X. Another (internal) epineurium: beyond the anatomical barriers of nerves. Clin. Anat. 2020: 33(2):199–206. doi: 10.1002/ca.23442

23. Leijnse J.N., Bakker B.S., D’Herde K. The brachial plexus – explaining its morphology and variability by a generic developmental model. J. Anat. 2020;236(5):862–882. doi: 10.1111/joa.13123

24. Qin B., Fu G., Yang J., Wang Y., Zhu Q., Liu X., Zhu J., Gu L. Microanatomy of the Separable Length of the C7. J. Reconstr. Microsurg. 2016;32(2):109–113. doi: 10.1055/s-0035-1563380.


Review

Views: 28


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)