Preview

Сибирский научный медицинский журнал

Расширенный поиск

Влияние терапии генно-инженерными биологическими препаратами на систему гемостаза у пациентов с ревматоидным артритом

https://doi.org/10.18699/SSMJ20250509

Аннотация

Пациенты с ревматоидным артритом (РА) имеют повышенный риск развития атеросклероза. Существенный вклад в прогрессирование атеросклеротического поражения артерий у больных РА вносят активация системы гемостаза и системное воспаление. Генно-инженерные биологические препараты (ГИБП) все чаще применяются у пациентов с РА. Учитывая наличие взаимосвязи между системным воспалением и гемостатическими нарушениями, не лишено оснований предположение о том, что ГИБП могут оказывать влияние на систему гемостаза у больных РА. Цель исследования – на основе анализа данных научных исследований продемонстрировать влияние генно-инженерной биологической терапии на систему гемостаза, а также оценить связь между системным воспалением и гиперкоагуляцией у пациентов с РА.

Материал и методы. Поиск публикаций проводился в научных базах данных Scopus, Web of Sciences, PubMed, The Cochrane Library, eLibrary. В качестве маркеров поиска использовались следующие ключевые слова и словосочетания: ревматоидный артрит (rheumatoid arthritis), атеросклероз (atherosclerosis), гемостаз (hemostasis), тромбоз (thrombosis), противоревматическая терапия (antirheumatic therapy), цитокины (cytokines), системное воспаление (systemic inflammation). Глубина поиска – 2014–2024 гг.

Результаты и их обсуждение. Благоприятное влияние ГИБП на снижение протромбогенного потенциала у больных РА связано со снижением выраженности системного воспаления, модификацией цитокинового статуса, улучшением функции эндотелия. Имеются данные, свидетельствующие о негативном влиянии ГИБП на систему гемостаза у пациентов с РА, что выражается в увеличении риска возникновения венозных и артериальных тромбозов и развития кровотечений.

Заключение. Изучение влияния ГИБП на свертывающую систему крови, а также уточнение патогенетических взаимосвязей между патологией гемостаза и системным воспалением у пациентов с РА представляет значительный научный интерес с точки зрения как снижения риска развития сердечно-сосудистых заболеваний, профилактики тромбоэмболических осложнений, так и поиска новых терапевтических мишеней.

Об авторе

А. А. Кононыхин
Национальный медицинский исследовательский центр травматологии и ортопедии им. Академика Г.А. Илизарова
Россия

Кононыхин Алексей Андреевич

640014, г. Курган, ул. Марии Ульяновой, 6



Список литературы

1. Насонов Е.Л., Олюнин Ю.А., Лила А.М. Ревматоидный артрит: проблемы ремиссии и резистентности к терапии. Научнопракт. ревматол. 2018;56(3):263–271. doi: 10.14412/1995-4484-2018-263-271

2. Woude D., Helm-van Mil A.H.M. Update on the epidemiology, risk factors, and disease outcomes of rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol. 2018;32(2):174–187. doi: 10.1016/j.berh.2018.10.005

3. Лила А.М., Дубинина Т.В., Древаль Р.О., Лапшина С.А., Заботина А.Н. Медико-социальная значимость и расчет экономического бремени аксиального спондилоартрита в РоссийскойФедерации. Соврем. ревматол. 2022;16(1):20–25. doi: 10.14412/1996-7012-2022-1-20-25

4. Kang S., Han K., Jung J.H., Eun Y., Kim I.Y., Hwang J., Koh E.M., Lee S., Cha H.S., Kim H., Lee J. Associations between cardiovascular outcomes and rheumatoid arthritis: a nationwide population-based cohort study. J. Clin. Med. 2022;11(22):6812. doi: 10.3390/jcm11226812

5. Agca R., Heslinga S., Rollefstad S., Heslinga M., McInnes I., Peters M., Kvien T., Dougados M., Radner H., Atzeni F., … Gonzalez-Gay M.H. MEULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann. Rheum. Dis. 2017;76(1):17–28. doi: 10.1136/annrheumdis-2016-209775

6. Dzaye O., Dudum R., Reiter-Brennan C., Kianoush S., Tota-Maharaj R., Cainzos-Achirica M., Blaha M.J. Coronary artery calcium scoring for individualized cardiovascular risk estimation in important patient subpopulations after the 2019 AHA/ACC primary prevention guidelines. Prog. Cardiovasc. Dis. 2019;62(5):423–430. doi: 10.1016/j.pcad.2019.10.007

7. Baghdadi L.R., Woodman R.J., Shanahan E.M., Mangoni A.A. The impact of traditional cardiovascular risk factors on cardiovascular outcomes in patients with rheumatoid arthritis: a systematic review and meta-analysis. PLoS One. 2015;10(2):e0117952. doi: 10.1371/journal.pone.0117952

8. Raj R., Thomas S., Gorantla V. Accelerated atherosclerosis in rheumatoid arthritis: a systematic review. F1000Res. 2022;11:466. doi: 10.12688/f1000research.112921.2

9. Бердюгина О.В., Черешнев В.А., Бердюгин К.А. Посттравматический гемартроз с точки зрения теории воспаления. Гений ортопедии. 2023;29(2):211–224.

10. Chung W.S., Peng C.L., Lin C.L., Chang Y.J., Chen Y.F., Chiang J.Y., Sung F.C., Kao C.H. Rheumatoid arthritis increases the risk of deep vein thrombosis and pulmonary thromboembolism: a nationwide cohort study. Ann. Rheum. Dis. 2014;73(10):1774–1780. doi: 10.1136/annrheumdis-2013-203380

11. Li L., Lu N., Avina-Galindo A.M., Zheng Y., Lacaille D., Esdaile J.M., Choi H.K., Aviña-Zubieta J.A. The risk and trend of pulmonary embolism and deep vein thrombosis in rheumatoid arthritis: a general population-based study. Rheumatology (Oxford). 2021;60(1):188–195. doi: 10.1093/rheumatology/keaa262

12. Ungprasert P., Srivali N., Spanuchart I., Thongprayoon C., Knight E.L. Risk of venous thromboembolism in patients with rheumatoid arthritis: a systematic review and meta-analysis. Clin. Rheumatol. 2014;33(3):297–304. doi: 10.1007/s10067-014-2492-7

13. Hu L.J., Ji B., Fan H.X. Venous thromboembolism risk in rheumatoid arthritis patients: a systematic review and updated meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 2021;25(22):7005–7013. doi: 10.26355/eurrev_202111_27249

14. Fazal Z.A., Avina-Galindo A.M., Marozoff S., Kwan J., Lu N., Avina-Zubieta J.A. Risk of venous thromboembolism in patients with rheumatoid arthritis: a meta-analysis of observational studies. BMC. Rheumatol. 2024;8(1):5. doi: 10.1186/s41927-024-00376-9

15. Ungprasert P., Srivali N., Wijarnpreecha K., Charoenpong P., Knight E.L. Non-steroidal anti-inflammatory drugs and risk of venous thromboembolism: a systematic review and meta-analysis. Rheumatology (Oxford). 2015;54(4):736–742. doi: 10.1093/rheumatology/keu408

16. Waljee A.K., Rogers M.A.M., Lin P., Singal A.G., Stein J.D., Marks R.M., Ayanian J.Z., Nallamothu B.K. Short term use of oral corticosteroids and related harms among adults in the United States: population based cohort study. BMJ. 2017;357:j1415. doi: 10.1136/bmj.j1415

17. Сатыбалдыева М.А., Решетняк Т.М., Середавкина Н.В., Глухова С.И., Каратеев Д.Е., Насонов Е.Л. Факторы риска венозных тромбозов у больных ревматоидным артритом. Научно-практ. ревматол. 2018;56(6):692–696. doi: 10.14412/1995-4484-2018-692-696

18. Arneth B. Coevolution of the coagulation and immune systems. Inflamm. Res. 2019;68(2):117–123. doi: 10.1007/s00011-018-01210-y

19. Kim J.S., Choi M., Choi J.Y., Kim J.Y., Kim J.Y., Song J.S., Ivashkiv L.B., Lee E.Y. Implication of the association of fibrinogen citrullination and osteoclastogenesis in bone destruction in rheumatoid arthritis. Cells. 2020;9(12):2720. doi: 10.3390/cells9122720

20. Aripova N., Duryee M.J., England B.R., Hunter C.D., Mordeson J.E., Ryan E.M., Daubach E.C., Romberger D.J., Thiele G.M., Mikuls T.R. Citrullinated and malondialdehyde-acetaldehyde modified fibrinogen activates macrophages and promotes an aggressive synovial fibroblast phenotype in patients with rheumatoid arthritis. Front. Immunol. 2023;14:1203548. doi: 10.3389/fimmu.2023.1203548

21. Hejblum B.P., Cui J., Lahey L.J., Cagan A., Sparks J.A., Sokolove J., Cai T., Liao K.P. Association between anti-citrullinated fibrinogen antibodies and coronary artery disease in rheumatoid arthritis. Arthritis Care Res. (Hoboken). 2018;70(7):1113–1117. doi: 10.1002/acr.23444

22. Olumuyiwa-Akeredolu O.O., Page M.J., Soma P., Pretorius E. Platelets: emerging facilitators of cellular crosstalk in rheumatoid arthritis. Nat. Rev. Rheumatol. 2019;15(4):237–248. doi: 10.1038/s41584-019-0187-9

23. Xue L., Tao L., Li X., Wang Y., Wang B., Zhang Y., Gao N., Dong Y., Xu N., Xiong C., … Li M. Plasma fibrinogen, D-dimer, and fibrin degradation product as biomarkers of rheumatoid arthritis. Sci. Rep. 2021;11(1):16903. doi: 10.1038/s41598-021-96349-w

24. Avouac J., Fogel O., Hecquet S., Daien C., Elalamy I., Picard F., Prati C., Salmon J.H., Truchetet M.E., Sellam J., Molto A.; behalf of the French Society of Rheumatology. Recommendations for assessing the risk of cardiovascular disease and venous thromboembolism before the initiation of targeted therapies for chronic inflammatory rheumatic diseases. Joint Bone Spine. 2023;90(5):105592. doi: 10.1016/j.jbspin.2023.105592

25. Bezuidenhout J.A., Pretorius E. The central role of acute phase proteins in rheumatoid arthritis: involvement in disease autoimmunity, in fl ammatory responses, and the heightened risk of cardiovascular disease. Semin. Thromb. Hemost. 2020;46(4):465–483. doi: 10.1055/s-0040-1709475

26. Aripova N., Duryee M.J., England B.R., Hunter C.D., Mordeson J.E., Ryan E.M., Daubach E.C., Romberger D.J., Thiele G.M., Mikuls T.R. Citrullinated and malondialdehyde-acetaldehyde modified fibrinogen activates macrophages and promotes an aggressive synovial fibroblast phenotype in patients with rheumatoid arthritis. Front. Immunol. 2023;14:1203548. doi: 10.3389/fimmu.2023.1203548

27. So A.K., Varisco P.A., Kemkes-Matthes B., Herkenne-Morard C., Chobaz-Péclat V., Gerster J.C., Busso N. Arthritis is linked to local and systemic activation of coagulation and fibrinolysis pathways. J. Thromb. Haemost. 2003;1(12):2510–2515. doi: 10.1111/j.1538-7836.2003.00462.x

28. Buckley B.J., Ali U., Kelso M.J., Ranson M. The urokinase plasminogen activation system in rheumatoid arthritis: pathophysiological roles and prospective therapeutic targets. Curr. Drug. Targets. 2019;20(9):970–981. doi: 10.2174/1389450120666181204164140

29. Kurgan Ş., Önder C., Balcı N., Fentoğlu Ö., Eser F., Balseven M., Serdar M.A., Tatakis D.N., Günhan M. Gingival crevicular fluid tissue/blood vessel-type plasminogen activator and plasminogen activator inhibitor-2 levels in patients with rheumatoid arthritis: effects of nonsurgical periodontal therapy. J. Periodontal. Res. 2017;52(3):574–581. doi: 10.1111/jre.12425

30. Valladolid C., Martinez-Vargas M., Sekhar N., Lam F., Brown C., Palzkill T., Tischer A., Auton M., Vijayan K.V., Rumbaut R.E., Nguyen T.C., Cruz M.A. Modulating the rate of fibrin formation and clot structure attenuates microvascular thrombosis in systemic inflammation. Blood. Adv. 2020;4(7):1340–1349. doi: 10.1182/bloodadvances.2020001500

31. De Sá M.C., Simão A.N.C., de Medeiros F.A., Iriyoda T.M.V., Costa N.T., Alfieri D.F., Flauzino T., Sekiguchi B.A., Lozovoy M.A.B., Reiche E.M.V., Maes M., Dichi I. Cell adhesion molecules and plasminogen activator inhibitor type-1 (PAI-1) in patients with rheumatoid arthritis: Influence of metabolic syndrome. Clin. Exp. Med. 2018;18(4):495–504. doi: 10.1007/s10238-018-0516-3

32. Luo M., Li R., Ren M., Chen N., Deng X., Tan X., Li Y., Zeng M., Yang Y., Wan Q., Wu J. Hyperglycaemia-induced reciprocal changes in miR-30c and PAI-1 expression in platelets. Sci. Rep. 2016;6:36687. doi: 10.1038/srep36687

33. van den Oever I.A., Sattar N., Nurmohamed M.T. Thromboembolic and cardiovascular risk in rheumatoid arthritis: role of the haemostatic system. Ann. Rheum. Dis. 2014;73(6):954–957. doi: 10.1136/annrheumdis-2013-204767

34. Liang H., Danwada R., Guo D., Curtis J.R., Kilpatrick R.D., Hendrickson B., Islam S.S. Incidence of inpatient venous thromboembolism in treated patients with rheumatoid arthritis and the association with switching biologic or targeted synthetic disease-modifying antirheumatic drugs (DMARDs) in the real-world setting. RMD Open. 2019;5(2):e001013. doi: 10.1136/ rmdopen-2019-001013

35. Burzynski L.C., Humphry M., Pyrillou K., Wiggins K.A., Chan J.N.E., Figg N., Kitt L.L., Summers C., Tatham K.C., Martin P.B., Bennett M.R., Clarke M.C.H. The coagulation and immune systems are directly linked through the activation of interleukin-1α by thrombin. Immunity. 2019;50(4):1033–1042. e6. doi: 10.1016/j.immuni.2019.03.003

36. Senchenkova E.Y., Komoto S., Russell J., Almeida-Paula L.D., Yan L.S., Zhang S., Granger D.N. Interleukin-6 mediates the platelet abnormalities and thrombogenesis associated with experimental colitis. Am. J. Pathol. 2013;183(1):173–181. doi: 10.1016/j.ajpath.2013.03.014

37. Senchenkova E.Y., Russell J., Yildirim A., Granger D.N., Gavins F.N.E. Novel role of T cells and IL-6 (interleukin-6) in angiotensin ii-induced microvascular dysfunction. Hypertension. 2019;73(4):829–838. doi: 10.1161/HYPERTENSIONAHA.118.12286

38. Fukui S., Gutch S., Fukui S., Chu L., Wagner D.D. Anti-inflammatory protective effect of ADAMTS-13 in murine arthritis models. J. Thromb. Haemost. 2022;20(10):2386–2393. doi: 10.1111/jth.15828

39. Ristić G.G., Subota V., Lepić T., Stanisavljević D., Glišić B., Ristić A.D., Petronijević M., Stefanović D.Z. Subclinical atherosclerosis in patients with rheumatoid arthritis and low cardiovascular risk: the role of von Willebrand factor activity. PLoS One. 2015;10(8):e0130462. doi: 10.1371/journal.pone.0130462

40. Gurol G., Ciftci I.H., Harman H., Karakece E., Kamanli A., Tekeoglu I. Roles of claudin-5 and von Willebrand factor in patients with rheumatoid arthritis. Int. J. Clin. Exp. Pathol. 2015;8(2):1979–1984.

41. Grover S.P., Mackman N. Tissue factor in atherosclerosis and atherothrombosis. Atherosclerosis. 2020;307:80–86. doi: 10.1016/j.atherosclerosis.2020.06.003

42. Witkowski M., Landmesser U, Rauch U. Tissue factor as a link between inflammation and coagulation. Trends Cardiovasc. Med. 2016;26(4):297–303. doi: 10.1016/j.tcm.2015.12.001

43. Frade-Sosa B., Sanmartí R. Neutrophils, neutrophil extracellular traps, and rheumatoid arthritis: An updated review for clinicians. Reumatol. Clin. (Engl. Ed.). 2023;19(9):515–526. doi: 10.1016/j.reumae.2023.10.002

44. Döring Y., Soehnlein O., Weber C. Neutrophil extracellular traps in atherosclerosis and atherothrombosis. Circ. Res. 2017;120(4):736–743. doi: 10.1161/ CIRCRESAHA.116.309692

45. Quillard T., Franck G., Mawson T., Folco E., Libby P. Mechanisms of erosion of atherosclerotic plaques. Curr. Opin. Lipidol. 2017;28(5):434–441. doi: 10.1097/MOL.0000000000000440

46. Partida R.A., Libby P., Crea F., Jang I.K. Plaque erosion: a new in vivo diagnosis and a potential major shift in the management of patients with acute coronary syndromes. Eur. Heart. J. 2018;39(22):2070– 2076. doi: 10.1093/eurheartj/ehx786

47. Folco E.J., Mawson T.L., Vromman A., Bernardes-Souza B., Franck G., Persson O., Nakamura M., Newton G., Luscinskas F.W., Libby P. Neutrophil extracellular traps induce endothelial cell activation and tissue factor production through interleukin-1α and cathepsin G. Arterioscler. Thromb. Vasc. Biol. 2018;38(8):1901– 1912. doi: 10.1161/ATVBAHA.118.311150

48. Franck G., Mawson T.L., Folco E.J., Molinaro R., Ruvkun V., Engelbertsen D., Liu X., Tesmenitsky Y., Shvartz E., Sukhova G.K., … Libby P. Roles of PAD4 and netosis in experimental atherosclerosis and arterial injury: implications for superficial erosion. Circ. Res. 2018;123(1):33–42. doi: 10.1161/CIRCRESAHA.117.312494

49. Quillard T., Araujo H.A., Franck G., Shvartz E., Sukhova G., Libby P. TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion. Eur. Heart. J. 2015;36(22):1394–1404. doi: 10.1093/eurheartj/ehv044

50. Klopf J., Brostjan C., Eilenberg W., Neumayer C. Neutrophil extracellular traps and their implications in cardiovascular and inflammatory disease. Int. J. Mol. Sci. 2021;22(2):559. doi: 10.3390/ijms22020559

51. Gu C., Pang B., Sun S., An C., Wu M., Wang N., Yuan Y., Liu G. Neutrophil extracellular traps contributing to atherosclerosis: From pathophysiology to clinical implications. Exp. Biol. Med. (Maywood). 2023;248(15):1302–1312. doi: 10.1177/15353702231184217

52. Song W., Ye J., Pan N., Tan C., Herrmann M. Neutrophil extracellular traps tied to rheumatoid arthritis: points to ponder. Front. Immunol. 2021;11:578129. doi: 10.3389/fimmu.2020.578129

53. Yang X., Li L., Liu J., Lv B., Chen F. Extracellular histones induce tissue factor expression in vascular endothelial cells via TLR and activation of NF- κB and AP-1. Thromb. Res. 2016;137:211–218. doi: 10.1016/j.thromres.2015.10.012

54. Kim J.E., Yoo H.J., Gu J.Y., Kim H.K. Histones induce the procoagulant phenotype of endothelial cells through tissue factor up-regulation and thrombomodulin down-regulation. PLoS One. 2016;11(6):e0156763. doi: 10.1371/journal.pone.0156763

55. Döring Y., Libby P., Soehnlein O. Neutrophil extracellular traps participate in cardiovascular diseases: recent experimental and clinical insights. Circ. Res. 2020;126(9):1228–1241. doi: 10.1161/CIRCRESAHA.120.315931

56. Kell D.B., Pretorius E. Serum ferritin is an important disease marker, and is mainly a leakage product from damaged cells. Metallomics. 2014;6(4):748–773. doi: 10.1039/C3MT00347G

57. van Eijk I.C., Tushuizen M.E., Sturk A., Dijkmans B.A., Boers M., Voskuyl A.E., Diamant M., Wolbink G.J., Nieuwland R., Nurmohamed M.T. Circulating microparticles remain associated with complement activation despite intensive anti-inflammatory therapy in early rheumatoid arthritis. Ann. Rheum. Dis. 2010;69(7):1378–1382. doi: 10.1136/ard.2009.118372

58. Stojanovic A., Veselinovic M., Zong Y., Jakovljevic V., Pruner I., Antovic A. Increased expression of extracellular vesicles is associated with the procoagulant state in patients with established rheumatoid arthritis. Front. Immunol. 2021;12:718845. doi: 10.3389/fimmu.2021.718845

59. Gitz E., Pollitt A.Y., Gitz-Francois J.J., Alshehri O., Mori J., Montague S., Nash G.B., Douglas M.R., Gardiner E.E., Andrews R.K., … Watson S.P. CLEC-2 expression is maintained on activated platelets and on platelet microparticles. Blood. 2014;124(14):2262–2270. doi: 10.1182/blood-2014-05-572818

60. Catrina A., Krishnamurthy A., Rethi B. Current view on the pathogenic role of anti-citrullinated protein antibodies in rheumatoid arthritis. RMD Open. 2021;7(1):e001228. doi: 10.1136/rmdopen-2020-001228

61. Xu M., Du R., Xing W., Chen X., Wan J., Wang S., Xiong L., Nandakumar K.S., Holmdahl R., Geng H. Platelets derived citrullinated proteins and microparticles are potential autoantibodies ACPA targets in RA patients. Front. Immunol. 2023;14:1084283. doi: 10.3389/fimmu.2023.1084283

62. Rodríguez-Carrio J., Alperi-López M., Lopez P., Alonso-Castro S., Carro-Esteban S.R., Ballina-Garcíá F.J., Suarez A. Altered profile of circulating microparticles in rheumatoid arthritis patients. Clin. Sci. (Lond). 2015;128(7):437–448. doi: 10.1042/CS20140675

63. Pretorius E., Akeredolu O.O., Soma P., Kell D.B. Major involvement of bacterial components in rheumatoid arthritis and its accompanying oxidative stress, systemic inflammation and hypercoagulability. Exp. Biol. Med. (Maywood). 2017;242(4):355–373. doi: 10.1177/1535370216681549

64. Rincón-Arévalo H., Burbano C., Atehortúa L., Rojas M., Vanegas-García A., Vásquez G., Castaño D. Modulation of B cell activation by extracellular vesicles and potential alteration of this pathway in patients with rheumatoid arthritis. Arthritis. Res. Ther. 2022;24(1):169. doi: 10.1186/s13075-022-02837-3

65. Beinsberger J., Heemskerk J.W., Cosemans J.M. Chronic arthritis and cardiovascular disease: Altered blood parameters give rise to a prothrombotic propensity. Semin. Arthritis. Rheum. 2014;44(3):345– 352. doi: 10.1016/j.semarthrit.2014.06.006

66. Wang F., Liu J., Fang Y., Wen J., He M., Han Q., Li X. Hypercoagulability in rheumatoid arthritis: a bibliometric analysis and retrospective data mining study. ACS Omega. 2023;8(50):48522–48534. doi: 10.1021/acsomega.3c08460

67. Khaled S.A.A., Mahmoud H.F.F. Platelet indices parameters in the new disease activity score of rheumatoid arthritis with ankle involvement: A comparative analytic study. PLoS One. 2021;16(9):e0257200. doi: 10.1371/journal.pone.0257200

68. Jiang S.Z., To J.L., Hughes M.R., McNagny K.M., Kim H. Platelet signaling at the nexus of innate immunity and rheumatoid arthritis. Front. Immunol. 2022;13:977828. doi: 10.3389/fimmu.2022.977828

69. Khan H.A., Haseeb Khan S., Tayyab Z., Saif S., Khan S.N., Musaddiq S. Association of red cell distribution width and mean platelet volume with disease activity in rheumatoid arthritis patients. Cureus. 2024;16(3):e56908. doi: 10.7759/cureus.56908

70. Журавлева Ю.А., Гусев Е.Ю. Взаимосвязь системной воспалительной реакции и гиперкоагуляции у пациентов с иммуновоспалительными ревматическими заболеваниями. Мед. иммунол. 2023;25(5):1059–1064. doi: 10.15789/1563-0625-RBS-2817.

71. Xue M., Shen K., McKelvey K., Li J., Chan Y.K., Hatzis V., March L., Little C.B., Tonkin M., Jackson C.J. Endothelial protein C receptor-associated invasiveness of rheumatoid synovial fibroblasts is likely driven by group V secretory phospholipase A2. Arthritis. Res. Ther. 2014;16(1):R44. doi: 10.1186/ar4473

72. Liu X., Huo Y., Zhao J., Wang G., Liu H., Yin F., Pang C., Wang Y., Bai L. Endothelial cell protein C receptor regulates neutrophil extracellular trap-mediated rheumatoid arthritis disease progression. Int. Immunopharmacol. 2022;112:109249. doi: 10.1016/j.intimp.2022.109249

73. Xue M., Lin H., Lynch T., Bereza-Malcolm L., Sinnathurai P., Thomas R., Keen H., Hill C., Lester S., Wechalekar M., March L. Exploring the association between circulating endothelial protein C receptor and disease activity of rheumatoid arthritis in a pilot study. Rheumatol. Adv. Pract. 2024;8(3):rkae096. doi: 10.1093/rap/rkae096

74. Bai L., Liu W., Guo P., Bai J., Liu Y., Hua Y., Pang C., Zhang W., Yin F., Wang Y. Elevated levels of soluble Endothelial protein C receptor in rheumatoid arthritis and block the therapeutic effect of protein C in collagen-induced arthritis. Int. Immunopharmacol. 2020;81:106255. doi: 10.1016/j.intimp.2020.106255

75. Xue M., Lin H., Liang H.P.H., Bereza-Malcolm L., Lynch T., Sinnathurai P., Weiler H., Jackson C., March L. EPCR deficiency ameliorates inflammatory arthritis in mice by suppressing the activation and migration of T cells and dendritic cells. Rheumatology (Oxford). 2024;63(2):571–580. doi: 10.1093/rheumatology/kead230

76. Пешкова А.Д., Евдокимова Т.А., Сибгатуллин Т.Б., Атауллаханов Ф.И., Литвинов Р.И. Изменения параметров тромбодинамики и контракции сгустков крови у пациентов с ревматоидным артритом. Научно-практ. ревматол. 2020;58(3):294–303. doi: 10.14412/1995-4484-2020-294-303.

77. Bezuidenhout J.A., Venter C., Roberts T.J., Tarr G., Kell D.B., Pretorius E.. Detection of citrullinated fibrin in plasma clots of rheumatoid arthritis patients and its relation to altered structural clot properties, disease-related inflammation and prothrombotic tendency. Front. Immunol. 2020;11:577523. doi: 10.3389/fimmu.2020.577523

78. Page M.J., Thomson G.J.A., Nunes J.M., Engelbrecht A.M., Nell T.A., de Villiers W.J.S., de Beer M.C., Engelbrecht L., Kell D.B., Pretorius E. Serum amyloid A binds to fibrin(ogen), promoting fibrin amyloid formation. Sci. Rep. 2019;9(1):3102. doi: 10.1038/s41598-019-39056-x

79. Fernández J.A., Deguchi H., Elias D.J., Griffin J.H. Serum amyloid A4 is a procoagulant apolipoprotein that it is elevated in venous thrombosis patients. Res. Pract. Thromb. Haemost. 2019;4(2):217–223. doi: 10.1002/rth2.12291

80. Gimbrone M.A. Jr., García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res. 2016;118(4):620–636. doi: 10.1161/CIRCRESAHA.115.306301

81. Singh V., Kaur R., Kumari P., Pasricha C., Singh R. ICAM-1 and VCAM-1: Gatekeepers in various inflammatory and cardiovascular disorders. Clin. Chim. Acta. 2023;548:117487. doi: 10.1016/j.cca.2023.117487

82. Troncoso M.F., Ortiz-Quintero J., Garrido-Moreno V., Sanhueza-Olivares F., Guerrero-Moncayo A., Chiong M., Castro P.F., García L., Gabrielli L., Corbalán R., Garrido-Olivares L., Lavandero S. VCAM-1 as a predictor biomarker in cardiovascular disease. Biochim. Biophys. Acta Mol. Basis. Dis. 2021;1867(9):166170. doi: 10.1016/j.bbadis.2021.166170

83. He S., Yao L., Li J. Role of MCP-1/CCR2 axis in renal fibrosis: Mechanisms and therapeutic targeting. Medicine (Baltimore). 2023;102(42):e35613. doi: 10.1097/MD.0000000000035613

84. Bassiouni W., Ali M.A.M., Schulz R. Multifunctional intracellular matrix metalloproteinases: implications in disease. FEBS J. 2021;288(24):7162– 7182. doi: 10.1111/febs.15701

85. Kim S.Y., Solomon D.H., Li J., Franklin J.M., Glynn R.J., Schneeweiss S. Risk of venous thromboembolism in patients with rheumatoid arthritis: initiating disease-modifying Antirheumatic drugs. Am. J. Med. 2015;128(5):539.e7–539.e17. doi: 10.1016/j.amjmed.2014.11.025

86. Chen C.P., Kung P.T., Chou W.Y., Tsai W.C. Effect of introducing biologics to patients with rheumatoid arthritis on the risk of venous thromboembolism: a nationwide cohort study. Sci. Rep. 2021;11(1):17009. doi: 10.1038/s41598-021-96508-z

87. den Broeder A.A., Joosten L.A., Saxne T., Heinegård D., Fenner H., Miltenburg A.M., Frasa W.L., van Tits L.J., Buurman W.A., van Riel P.L., van de Putte L.B., Barrera P. Long term anti-tumour necrosis factor alpha monotherapy in rheumatoid arthritis: effect on radiological course and prognostic value of markers of cartilage turnover and endothelial activation. Ann. Rheum. Dis. 2002;61(4):311–318. doi: 10.1136/ard.61.4.311

88. Gonzalez-Gay M.A., Garcia-Unzueta M.T., De Matias J.M., Gonzalez-Juanatey C., Garcia-Porrua C., Sanchez-Andrade A., Martin J., Llorca J. Influence of anti-TNF-alpha infliximab therapy on adhesion molecules associated with atherogenesis in patients with rheumatoid arthritis. Clin. Exp. Rheumatol. 2006;24(4):373–379.

89. Klimiuk P.A., Sierakowski S., Domyslawska I., Chwiecko J. Effect of etanercept on serum levels of soluble cell adhesion molecules (sICAM-1, sVCAM-1, and sE-selectin) and vascular endothelial growth factor in patients with rheumatoid arthritis. Scand. J. Rheumatol. 2009;38(6):439–444. doi: 10.3109/03009740903079321

90. Kerekes G., Soltész P., Szucs G., Szamosi S., Dér H., Szabó Z., Csáthy L., Váncsa A., Szodoray P., Szegedi G., Szekanecz Z. Effects of adalimumab treatment on vascular disease associated with early rheumatoid arthritis. Isr. Med. Assoc. J. 2011;13(3):147–152.

91. Князева Л.А., Мещерина Н.С. Влияние терапии инфликсимабом на уровень иммунологических маркеров кардиоваскулярного риска и ремоделирование артериального русла у больных ревматоидным артритом. Курск. науч.-практ. вестн. «Человек и его здоровье». 2012;(4):49–55.

92. Szeremeta A., Jura-Półtorak A., Zoń-Giebel A., Olczyk K., Komosińska-Vassev K. TNF-α inhibitors in combination with MTX reduce circulating levels of heparan sulfate/heparin and endothelial dysfunction biomarkers (sVCAM-1, MCP-1, MMP-9 and ADMA) in women with rheumatoid arthritis. J. Clin. Med. 2022;11(14):4213. doi: 10.3390/jcm11144213

93. Manfredi A.A., Baldini M., Camera M., Baldissera E., Brambilla M., Peretti G., Maseri A., Rovere-Querini P., Tremoli E., Sabbadini M.G., Maugeri N. Anti-TNFα agents curb platelet activation in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2016;75(8):1511–1520. doi: 10.1136/annrheumdis-2015-208442

94. Agirbasli M., Inanc N., Baykan O.A., Direskeneli H. The effects of TNF alpha inhibition on plasma fibrinolytic balance in patients with chronic inflammatory rheumatical disorders. Clin. Exp. Rheumatol. 2006;24(5):580–583.

95. Ingegnoli F., Fantini F., Favalli E.G., Soldi A., Griffini S., Galbiati V., Meroni P.L., Cugno M. Inflammatory and prothrombotic biomarkers in patients with rheumatoid arthritis: effects of tumor necrosis factor-alpha blockade. J. Autoimmun. 2008;31(2):175–179. doi: 10.1016/j.jaut.2008.07.002

96. Ingegnoli F., Fantini F., Griffini S., Soldi A., Meroni P.L., Cugno M. Anti-tumor necrosis factor alpha therapy normalizes fibrinolysis impairment in patients with active rheumatoid arthritis. Clin. Exp. Rheumatol. 2010;28(2):254–247.

97. Князева Л.А., Мещерина Н.С. Иммунологические и васкулярные эффекты ритуксимаба при ревматоидном артрите. Астрах. мед. ж. 2013;8(1):122–127.

98. Hsue P.Y., Scherzer R., Grunfeld C., Imboden J., Wu Y., Del Puerto G., Nitta E., Shigenaga J., Schnell Heringer A., Ganz P., Graf J. Depletion of B-cells with rituximab improves endothelial function and reduces inflammation among individuals with rheumatoid arthritis. J. Am. Heart. Assoc. 2014;3(5):e001267. doi: 10.1161/JAHA.114.001267

99. Jin T., Bokarewa M., Amu S., Tarkowski A. Impact of short-term therapies with biologics on prothrombotic biomarkers in rheumatoid arthritis. Clin. Exp. Rheumatol. 2009;27(3):491–494.

100. Gabay C., Burmester G.R., Strand V., Msihid J., Zilberstein M., Kimura T., van Hoogstraten H, Boklage S.H., Sadeh J., Graham N.M.H., Boyapati A. Sarilumab and adalimumab differential effects on bone remodelling and cardiovascular risk biomarkers, and predictions of treatment outcomes. Arthritis Res. Ther. 2020;22(1):70. doi: 10.1186/s13075-020-02163-6

101. Makrilakis K., Fragiadaki K., Smith J., Sfikakis P.P., Kitas G.D. Interrelated reduction of chemerin and plasminogen activator inhibitor-1 serum levels in rheumatoid arthritis after interleukin-6 receptor blockade. Clin. Rheumatol. 2015;34(3):419–427. doi: 10.1007/s10067-014-2704-1

102. Gualtierotti R., Ingegnoli F., Griffini S., Grovetti E., Meroni P.L., Cugno M. Prothrombotic biomarkers in patients with rheumatoid arthritis: the beneficial effect of IL-6 receptor blockade. Clin. Exp. Rheumatol. 2016;34(3):451–458.

103. Gualtierotti R., Ingegnoli F., Boscolo M., Griffini S., Grovetti E., Cugno M. Tocilizumab effects on coagulation factor XIII in patients with rheumatoid arthritis. Adv. Ther. 2019;36(12):3494–3502. doi: 10.1007/s12325-019-01118-x

104. Imamura H., Momohara S., Yano K., Sakuma Y., Nakayama M., Tobimatsu H., Ikari K. Tocilizumab treatment in patients with rheumatoid arthritis is associated with reduced fibrinogen levels and increased blood loss after total knee arthroplasty. Mod. Rheumatol. 2018;28(6):976–980. doi: 10.1080/14397595.2018.1428041

105. An Q., Ma R., Yuan D., Huang J., Luo J., Wang Y., Pan Y., Wang P., Lv X., Pu D., He L. Clinical observation of hypofibrinogenemia induced by the treatment of tocilizumab in rheumatic diseases and exploration of risk factor for hypofibrinogenemia. Clin. Rheumatol. 2024;43(5):1491–1501. doi: 10.1007/s10067-024-06937-0

106. Dijkshoorn B., Hansildaar R., Vedder D., Soutari N., Rudin A., Nordström D., Gudbjornsson B., Lend K., Uhlig T., Haavardsholm E.A., … Nurmohamed M.T. Impaired coagulation parameters in early RA are restored by effective antirheumatic therapy: a prospective pilot study. RMD Open. 2024;10(4):e004838. doi: 10.1136/rmdopen-2024-004838

107. Ikonomidis I., Lekakis J.P., Nikolaou M., Paraskevaidis I., Andreadou I., Kaplanoglou T., Katsimbri P., Skarantavos G., Soucacos P.N., Kremastinos D.T. Inhibition of interleukin-1 by anakinra improves vascular and left ventricular function in patients with rheumatoid arthritis. Circulation. 2008;117(20):2662–2669. doi: 10.1161/CIRCULATIONAHA.107.731877

108. Dwivedi R.C., Dhindsa N., Krokhin O.V., Cortens J., Wilkins J.A., El-Gabalawy H.S. The effects of infliximab therapy on the serum proteome of rheumatoid arthritis patients. Arthritis. Res. Ther. 2009;11(2):R32. doi: 10.1186/ar2637

109. Makol A., Grover M., Guggenheim C., Hassouna H. Etanercept and venous thromboembolism: a case series. J. Med. Case Rep. 2010;4:12. doi: 10.1186/1752-1947-4-12

110. Roy M., Rathore H., Roy A.K. Pulmonary embolism in a patient with rheumatoid arthritis on etanercept therapy. J. Community. Hosp. Intern. Med. Perspect. 2024;14(1):39–42. doi: 10.55729/2000-9666.1294

111. Davies R., Galloway J.B., Watson K.D. Lunt M., Symmons D.P., Hyrich K.L. Venous thrombotic events are not increased in patients with rheumatoid arthritis treated with anti-TNF therapy: results from the British Society for Rheumatology Biologics Register. Ann. Rheum. Dis. 2011;70(10):1831–1834. doi: 10.1136/ard.2011.153536

112. Aghdashi M.A., Khadir M., Dinparasti-Saleh R. Antinuclear antibodies and lupus-like manifestations in rheumatoid arthritis and ankylosing spondylitis patients at 4 months’ follow-up after treatment with infliximab and etanercept. Curr. Rheumatol. Rev. 2020;16(1):61–66. doi: 10.2174/157339711566619050 6152729

113. Jonsdottir T., Forslid J., van Vollenhoven A., Harju A., Brannemark S., Klareskog L., van Vollenhoven R.F. Treatment with tumour necrosis factor antagonists in patients with rheumatoid arthritis induces anticardiolipin antibodies. Ann. Rheum. Dis. 2004;63(9):1075–1078. doi: 10.1136/ard.2003.018093

114. Virupannavar S., Brandau A., Guggenheim C., Laird-Fick H. Possible association of etanercept, venous thrombosis, and induction of antiphospholipid syndrome. Case Rep. Rheumatol. 2014;2014:801072. doi: 10.1155/2014/801072

115. Korswagen L.A., Bartelds G.M., Krieckaert C.L. Turkstra F., Nurmohamed M.T., van Schaardenburg D., Wijbrandts C.A., Tak P.P., Lems W.F., Dijkmans B.A., van Vugt R.M., Wolbink G.J. Venous and arterial thromboembolic events in adalimumab-treatedpatients with antiadalimumab antibodies: a case series and cohort study. Arthr. Rheum. 2011;63(4):877–883. doi: 10.1002/art.30209

116. Sepriano A., Kerschbaumer A., Smolen J.S., van der Heijde D., Dougados M., van Vollenhoven R., McInnes I.B., Bijlsma J.W., Burmester G.R., de Wit M., Falzon L., Landewé R. Safety of synthetic and biological DMARDs: a systematic literature review informing the 2019 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann. Rheum. Dis. 2020;79(6):760–770. doi: 10.1136/annrheumdis-2019-216653

117. Choy E.H., de Benedetti F., Takeuchi T., Hashizume M., John M.R., Kishimoto T. Translating IL-6 biology into effective treatments. Nat. Rev. Rheumatol. 2020;16(6):335–345. doi: 10.1038/s41584-020-0419-z

118. Salemi R., Gattuso G., Tomasello B., Lavoro A., Gaudio A., Libra M., Signorelli S.S., Candido S. Co-occurrence of interleukin-6 receptor Asp358Ala variant and high plasma levels of IL-6: an evidence of IL-6 trans-signaling activation in deep vein thrombosis (DVT) patients. Biomolecules. 2022;12(5):681. doi: 10.3390/biom12050681

119. Zhang H., Dhalla N.S. The role of pro-inflammatory cytokines in the pathogenesis of cardiovascular disease. Int. J. Mol. Sci. 2024;25(2):1082. doi: 10.3390/ijms25021082

120. Watanabe H., Mokuda S., Tokunaga T., Kohno H., Ishitoku M., Araki K., Sugimoto T., Yoshida Y., Yamamoto T., Matsumoto M., … Sugiyama E. Expression of factor XIII originating from synovial fibroblasts and macrophages induced by interleukin-6 signaling. Inflamm. Regen. 2023;43(1):2. doi: 10.1186/s41232-022-00252-4

121. Kleveland O., Kunszt G., Bratlie M., Ueland T., Broch K., Holte E., Michelsen A.E., Bendz B., Amundsen B.H., Espevik T., … Gullestad L. Effect of a single dose of the interleukin-6 receptor antagonist tocilizumab on inflammation and troponin T release in patients with non-ST-elevation myocardial infarction: a double-blind, randomized, placebo-controlled phase 2 trial. Eur. Heart. J. 2016;37(30):2406–2413. doi: 10.1093/eurheartj/ehw171

122. Knopp T., Jung R., Wild J., Bochenek M.L., Efentakis P., Lehmann A., Bieler T., Garlapati V., Richter C., Molitor M., … Karbach S. Myeloid cell-derived interleukin-6 induces vascular dysfunction and vascular and systemic inflammation. Eur. Heart. J. Open. 2024;4(4):oeae046. doi: 10.1093/ehjopen/oeae046

123. Makrilakis K., Fragiadaki K., Smith J., Sfikakis P.P., Kitas G.D. Interrelated reduction of chemerin and plasminogen activator inhibitor-1 serum levels in rheumatoid arthritis after interleukin-6 receptor blockade. Clin. Rheumatol. 2015;34(3):419–427. doi: 10.1007/s10067-014-2704-1

124. Matsuoka M., Majima T., Onodera T., Ieko M., Souri M., Ichinose A., Kurita T., Kasahara Y., Inoue M., Takahashi D. Hemorrhagic-acquired factor XIII deficiency associated with tocilizumab for treatment of rheumatoid arthritis. Int. J. Hematol. 2012;96(6):781– 785. doi: 10.1007/s12185-012-1191-x

125. Mokuda S., Murata Y., Sawada N., Matoba K., Yamada A., Onishi M., Okuda Y., Jouyama K., Sugiyama E., Takasugi K. Tocilizumab induced acquired factor XIII deficiency in patients with rheumatoid arthritis. PLoS One. 2013;8(8):e69944. doi: 10.1371/journal.pone.0069944

126. Souri M., Mokuda S., Inanami H., Osaki T., Takasugi K., Ichinose A. Non-autoimmune combined factor XIII A and B subunit deficiencies in rheumatoid arthritis patients treated with anti-interleukin-6 receptor monoclonal antibody (tocilizumab). Thromb. Res. 2016;140:100–105. doi: 10.1016/j.thromres.2016.02.026

127. Ruiz-Limón P., Ortega R., Arias de la Rosa I., Abalos-Aguilera M.D.C., Perez-Sanchez C., JimenezGomez Y., Peralbo-Santaella E., Font P., Ruiz-Vilches D., Ferrin G., … Barbarroja N. Tocilizumab improves the proatherothrombotic profile of rheumatoid arthritis patients modulating endothelial dysfunction, NETosis, and inflammation. Transl. Res. 2017;183:87–103. doi: 10.1016/j.trsl.2016.12.003

128. He T., Ling J., Yang J. Tocilizumab-induced hypofibrinogenemia in patients with systemic-onset juvenile idiopathic arthritis. Sci. Rep. 2023;13(1):9050. doi: 10.1038/s41598-023-36246-6

129. Üsküdar Cansu D., Demirtaş E., Andiç N., Üsküdar Teke H., Korkmaz C. Is it required to routinely check fibrinogen level in patients with rheumatic diseases on tocilizumab? Case-based review. Rheumatol. Int. 2019;39(4):743–750. doi: 10.1007/s00296-019-04268-x

130. Schuhmann M.K., Langhauser F., Kraft P., Kleinschnitz C. B cells do not have a major pathophysiologic role in acute ischemic stroke in mice. J. Neuroinflammation. 2017;14(1):112. doi: 10.1186/s12974- 017-0890-x

131. Bodhankar S., Chen Y., Vandenbark A.A., Murphy S.J., Offner H. Treatment of experimental stroke with IL-10-producing B-cells reduces infarct size and peripheral and CNS inflammation in wild-type Bcell-sufficient mice. Metab. Brain Dis. 2014;29(1):59– 73. doi: 10.1007/s11011-013-9474-3

132. Zhang Y., Jiang Y., Zou Y., Fan Y., Feng P., Fu X., Li K., Zhang J., Dong Y., Yan S., Zhang Y. Peripheral blood CD19 positive B lymphocytes increase after ischemic stroke and correlate with carotid atherosclerosis. Front. Neurol. 2023;14:1308041. doi: 10.3389/fneur.2023.1308041

133. Ait-Oufella H., Herbin O., Bouaziz J.D., Binder C.J., Uyttenhove C., Laurans L., Taleb S., van Vré E., Esposito B., Vilar J., … Mallat Z. B cell depletion reduces the development of atherosclerosis in mice. J. Exp. Med. 2010;207(8):1579–1587. doi: 10.1084/jem.20100155

134. Watanabe M., Sangawa A., Sasaki Y., Yamashita M., Tanaka-Shintani M., Shintaku M., Ishikawa Y. Distribution of inflammatory cells in adventitia changed with advancing atherosclerosis of human coronary artery. J. Atheroscler. Thromb. 2007;14(6):325–331. doi: 10.5551/jat.e489

135. Aubry M.C., Riehle D.L., Edwards W.D., Maradit-Kremers H., Roger V.L., Sebo T.J., Gabriel S.E. B-Lymphocytes in plaque and adventitia of coronary arteries in two patients with rheumatoid arthritis and coronary atherosclerosis: preliminary observations. Cardiovasc. Pathol. 2004;13(4):233–236. doi: 10.1016/j.carpath.2004.02.005

136. Kyaw T., Tay C., Khan A., Dumouchel V., Cao A., To K., Kehry M., Dunn R., Agrotis A., Tipping P., Bobik A., Toh B.H. Conventional B2 B cell depletion ameliorates whereas its adoptive transfer aggravates atherosclerosis. J. Immunol. 2010;185(7):4410–4419. doi: 10.4049/jimmunol.1000033

137. Huang Y.J., Han L., Li J., Chen C. Acquired coagulation dysfunction resulting from vitamin K-dependent coagulation factor deficiency associated with rheumatoid arthritis: A case report. World. J. Clin. Cases. 2022;10(1):236–241. doi: 10.12998/wjcc.v10. i1.236

138. Shah S., Tseng M., Durojaiye A. A rare case of acquired factor VIII deficiency in an elderly male with a history of rheumatoid arthritis. Cureus. 2023;15(8):e44169. doi: 10.7759/cureus.44169

139. Ghozlani I., Mounach A., Ghazi M., Kherrab A., Niamane R. Targeting acquired hemophilia a with rheumatoid arthritis by a rituximab shot: a case report and review of the literature. Am. J. Case Rep. 2018;19:582–588. doi: 10.12659/AJCR.908854

140. Yudhishdran J., Sivakumar J., Navinan M.R., Bandapatti S. Rituximab induced acute thrombocytopenia in a patient with systemic lupus erythematosus: a case report. J. Med. Case Rep. 2021;15(1):339. doi: 10.1186/s13256-021-02950-y

141. Endo Y., Koga T., Ishida M., Fujita Y., Tsuji S., Takatani A., Shimizu T., Sumiyoshi R., Igawa T., Umeda M., … Kawakami A. Rituximab-induced acute thrombocytopenia in granulomatosis with polyangiitis. Intern. Med. 2018;57(15):2247–2250. doi: 10.2169/internalmedicine.0335-17

142. Jiang Y., Song J., Wang N., Yuan D., Feng L., Qu H., Fan J. Rituximab-induced acute thrombocytopenia in patients with splenomegaly B Cell lymphoma: an underdiagnosed but severe complication. Cancer. Biol. Ther. 2020;21(11):1060–1066. doi: 10.1080/15384047.2020.1832017

143. Chaurasiya P.S., Khatri A., Gurung S., Karki S., Shahi S., Aryal L. Rituximab for acute plasma-refractory thrombotic thrombocytopenic purpura: A case report. Ann. Med. Surg. (Lond). 2022;82:104789. doi: 10.1016/j.amsu.2022.104789

144. Song F., Al-Samkari H. Management of adult patients with immune thrombocytopenia (ITP): A review on current guidance and experience from clinical practice. J. Blood. Med. 2021;12:653–664. doi: 10.2147/JBM.S259101.


Рецензия

Просмотров: 22


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)