Preview

Сибирский научный медицинский журнал

Advanced search

The impact of metabolic disorders on the therapeutic efficacy and toxicity of amiodarone: mechanisms and management strategies

https://doi.org/10.18699/SSMJ20250508

Abstract

Amiodarone is one of the most effective and commonly prescribed class III antiarrhythmic agents. However, its pharmacokinetics may be impaired and toxicity may be aggravated by metabolic disorders. The review presents data showing that dyslipidemia, obesity, and type 2 diabetes mellitus significantly affect pharmacokinetics, pharmacodynamics and toxic profile of amiodarone. These conditions alter the drug’s binding to lipoproteins, the activity of cytochrome P450- dependent monooxygenases and tissue distribution, thereby increasing the risk of accumulation and toxic effects. Chronic heart failure further impairs drug metabolism and contributes to multisystem toxicity. The current clinical guidelines do not adequately address these critical aspects. Therefore, more rigorous monitoring of these patients and their plasma drug concentration (on individual basis) is suggested, along with a generally more cautious approach to amiodarone use. Future perspectives include prospective clinical trials on amiodarone, physiologically based pharmacokinetic modeling for personalized dosing, based on body mass index, lipid profile, and comorbidities, pharmacogenomic studies (cytochrome P450 polymorphisms), as well as biomarker discovery for drug toxicity prediction.

About the Authors

E. D. Kozlov
Ogarev Mordovia State University
Russian Federation

Evgeniy D. Kozlov

430005, Saransk, Bolshevistskaya st., 68



A. V. Zorkina
Ogarev Mordovia State University
Russian Federation

Angelina V. Zorkina, doctor of medical science, professor

430005, Saransk, Bolshevistskaya st., 68



References

1. Hamilton D.Sr., Nandkeolyar S., Lan H., Desai P., Evans J., Hauschild C., Choksi D., Abudayyeh I., Contractor T., Hilliard A. Amiodarone: a comprehensive guide for clinicians. Am. J. Cardiovasc. Drugs. 2020;20(6):549–558. doi: 10.1007/s40256-020-00401-5

2. Șorodoc V., Indrei L., Dobroghii C., Asaftei A., Ceasovschih A., Constantin M., Lionte C., Morărașu B.C., Diaconu A.D., Șorodoc L. Amiodarone therapy: updated practical insights. J. Clin. Med. 2024;13(20):6094. doi: 10.3390/jcm13206094

3. Mujović N., Dobrev D., Marinković M., Russo V., Potpara T.S. The role of amiodarone in contemporary management of complex cardiac arrhythmias. Pharmacol. Res. 2020;151:104521. doi: 10.1016/j. phrs.2019.104521

4. Zimetbaum P. Antiarrhythmic drug therapy for atrial fibrillation. Circulation. 2012;125(2):381–389. doi: 10.1161/CIRCULATIONAHA.111.019927

5. Dan G.A., Martinez-Rubio A., Agewall S., Boriani G., Borggrefe M., Gaita F., van Gelder I., Gorenek B., Kaski J.C., Kjeldsen K., … ESC Scientific Document Group. Antiarrhythmic drugs-clinical use and clinical decision making: a consensus document from the European Heart Rhythm Association (EHRA) and European Society of Cardiology (ESC) Working Group on Cardiovascular Pharmacology, endorsed by the Heart Rhythm Society (HRS), Asia-Pacific Heart Rhythm Society (APHRS) and International Society of Cardiovascular Pharmacotherapy (ISCP). Europace. 2018;20(5):731–732an. doi: 10.1093/europace/eux373

6. Allen LaPointe N.M., Dai D., Thomas L., Piccini J.P., Peterson E.D., Al-Khatib S.M. Antiarrhythmic drug use in patients <65 years with atrial fibrillation and without structural heart disease. Am. J. Cardiol. 2015;115(3):316–322. doi: 10.1016/j.amjcard.2014.11.005.

7. Claro J.C., Candia R., Rada G., Baraona F., Larrondo F., Letelier L.M. Amiodarone versus other pharmacological interventions for prevention of sudden cardiac death. Cochrane Database Syst. Rev. 2015;2015(12):CD008093. doi: 10.1002/14651858. CD008093.pub2

8. Gopinathannair R., Pothineni N.V.K., Trivedi J.R., Roukoz H., Cowger J., Ahmed M.M., Bhan A., Ravichandran A., Bhat G., Al Ahmad A., … Lakkireddy D. Amiodarone use and all-cause mortality in patients with a continuous-flow left ventricular assist device. J. Am. Heart Assoc. 2022;11(11):e023762. doi: 10.1161/JAHA.121.023762

9. Bardy G.H., Lee K.L., Mark D.B., Poole J.E., Packer D.L., Boineau R., Domanski M., Troutman C., Anderson J., Johnson G., … Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT) Investigators. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N. Engl. J. Med. 2005;352(3):225–237. doi: 10.1056/NEJMoa043399

10. Baker W.L., Jennings D.L. Pre-cardiac transplant amiodarone use increases postoperative mortality: a meta-analysis. Ann. Pharmacother. 2016;50(6):514– 515. doi: 10.1177/1060028016645117

11. Cooper L.B., Mentz R.J., Edwards L.B., Wilk A.R., Rogers J.G., Patel C.B., Milano C.A., Hernandez A.F., Stehlik J., Lund L.H. Amiodarone use in patients listed for heart transplant is associated with increased 1-year post-transplant mortality. J. Heart Lung Transplant. 2017;36(2):202–210. doi: 10.1016/j. healun.2016.07.009

12. Adelstein E.C., Althouse A.D., Davis L., Schwartzman D., Bazaz R., Jain S., Wang N., Saba S. Amiodarone is associated with adverse outcomes in patients with sustained ventricular arrhythmias upgraded to cardiac resynchronization therapy-defibrillators. J. Cardiovasc. Electrophysiol. 2019;30(3):348–356. doi: 10.1111/jce.13828

13. Xia Y., Forest S., Friedmann P., Chou L.C., Patel S., Jorde U., Goldstein D. Factors associated with prolonged survival in left ventricular assist device recipients. Ann. Thorac. Surg. 2019;107(2):519–526. doi: 10.1016/j.athoracsur.2018.08.054

14. Al-Hiari M., Abumuhfouz M., Kayali L., Panta U., Rueda Rios C. A fatal consequence: amiodarone-induced multiorgan toxicity. Cureus. 2024;16(6):e62260. doi: 10.7759/cureus.62260

15. Panchal A.R., Berg K.M., Kudenchuk P.J., Del Rios M., Hirsch K.G., Link M.S., Kurz M.C., Chan P.S., Cabañas J.G., Morley P.T., Hazinski M.F., Donnino M.W. 2018 American Heart Association Focused Update on Advanced Cardiovascular Life Support Use of Antiarrhythmic Drugs During and Immediately After Cardiac Arrest: An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2018;138(23):e740–e749. doi: 10.1161/ CIR.0000000000000613

16. Zeppenfeld K., Tfelt-Hansen J., de Riva M., Winkel B.G., Behr E.R., Blom N.A., Charron P., Corrado D., Dagres N., de Chillou C., … ESC Scientific Document Group. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur. Heart J. 2022;43(40):3997–4126. doi: 10.1093/eurheartj/ ehac262

17. van Gelder I.C., Rienstra M., Bunting K.V., Casado-Arroyo R., Caso V., Crijns H.J.G.M., De Potter T.J.R., Dwight J., Guasti L., Hanke T., … ESC Scientific Document Group. 2024 ESC Guidelines for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2024;45(36):3314– 3414. doi: 10.1093/eurheartj/ehae176

18. Chew N.W.S., Ng C.H., Tan D.J.H., Kong G., Lin C., Chin Y.H., Lim W.H., Huang D.Q., Quek J., Fu C.E., … Muthiah M.D. The global burden of metabolic disease: Data from 2000 to 2019. Cell Metab. 2023;35(3):414–428. doi: 10.1016/j.cmet.2023.02.003

19. Chen H., Liu L., Wang Y., Hong L., Zhong W., Lehr T., Bragazzi N.L., Tang B., Dai H. Burden of cardiovascular disease attributable to metabolic risks in 204 countries and territories from 1990 to 2021. Eur. Heart J. Qual. Care Clin. Outcomes. 2024;11(4):467– 476. doi: 10.1093/ehjqcco/qcae090

20. Uno T., Sakakura K., Mukai Y., Takada M., Noda T., Kusano K., Hayakawa N. Pharmacokinetics and pharmacodynamics of amiodarone in patients with hypertriglyceridemia: Two case reports. Int. J. Clin. Pharmacol. Ther. 2022;60(12):515–520. doi: 10.5414/ CP204247

21. Hashimoto N., Doki K., Kawano S., Aonuma K., Ieda M., Homma M. Increased serum amiodarone concentration in hypertriglyceridemic patients: Effects of drug distribution to serum lipoproteins. Clin. Transl. Sci. 2022;15(3):771–781. doi: 10.1111/ cts.13199

22. Hamdy D.A., Brocks D.R. Experimental hyperlipidemia causes an increase in the electrocardiographic changes associated with amiodarone. J. Cardiovasc. Pharmacol. 2009;53(1):1–8. doi: 10.1097/ FJC.0b013e31819359d1

23. Ligero C., Riera P., El-Amrani A., Bazan V., Guerra J.M., Herraez S., Viñolas X., Alegret J.M. Impact of body mass index in the cardioverter efficacy of amiodarone in persistent atrial fibrillation. Pharmaceuticals (Basel). 2024;17(6):693. doi: 10.3390/ ph17060693

24. Le V.K., Kavanagh K.M., Raj S.R., Pollak P.T. Tolerance of high-dose oral amiodarone for cardioversion of atrial flutter. CJC Open. 2022;4(8):724–728. doi: 10.1016/j.cjco.2022.04.006

25. Tamim M., Erdil N., Demirkilic U., Cetin L., Sener E., Tatar H. The response to antiarrhythmia therapy with amiodarone in diabetic patients undergoing coronary artery bypass grafting. The Internet Journal of Cardiology. 2001;01(02). doi: 10.5580/20B4

26. Iervasi G., Clerico A., Bonini R., Nannipieri M., Manfredi C., Sabatino L., Biagini A., Donato L. Effect of antiarrhythmic therapy with intravenous loading dose of amiodarone: evidence for an altered response in diabetic patients. Int. J. Clin. Pharmacol. Res. 1998;18(3):109–120.

27. Colunga Biancatelli R.M., Congedo V., Calvosa L., Ciacciarelli M., Polidoro A., Iuliano L. Adverse reactions of Amiodarone. J. Geriatr. Cardiol. 2019;16(7):552–566. doi: 10.11909/j.issn.1671- 5411.2019.07.004

28. Gelman I., Sharma N., Mckeeman O., Lee P., Campagna N., Tomei N., Baranchuk A., Zhang S., El-Diasty M. The ion channel basis of pharmacological effects of amiodarone on myocardial electrophysiological properties, a comprehensive review. Biomed. Pharmacother. 2024;174:116513. doi: 10.1016/j.biopha.2024.116513

29. Kodama I., Kamiya K., Toyama J. Cellular electropharmacology of amiodarone. Cardiovasc. Res. 1997;35(1):13–29. doi: 10.1016/s0008-6363(97)00114-4

30. Kodama I., Kamiya K., Toyama J. Amiodarone: ionic and cellular mechanisms of action of the most promising class III agent. Am. J. Cardiol. 1999;84(9A):20R– 28R. doi: 10.1016/s0002-9149(99)00698-0

31. Vassallo P., Trohman R.G. Prescribing amiodarone: an evidence-based review of clinical indications. JAMA. 2007;298(11):1312–1322. doi: 10.1001/ jama.298.11.1312

32. Drouin E., Lande G., Charpentier F. Amiodarone reduces transmural heterogeneity of repolarization in the human heart. J. Am. Coll. Cardiol. 1998;32(4):1063– 1067. doi: 10.1016/s0735-1097(98)00330-1

33. Latini R., Tognoni G., Kates R.E. Clinical pharmacokinetics of amiodarone. Clin. Pharmacokinet. 1984;9(2):136–156. doi: 10.2165/00003088- 198409020-00002

34. Freedman M.D., Somberg J.C. Pharmacology and pharmacokinetics of amiodarone. J. Clin. Pharmacol. 1991;31(11):1061–1069. doi: 10.1002/j.1552- 4604.1991.tb03673.x

35. Plomp T.A., Wiersinga W.M., van Rossum J.M., Maes R.A. Pharmacokinetics and body distribution of amiodarone and desethylamiodarone in rats after oral administration. In Vivo. 1987;1(5):265–279.

36. Somani P. Basic and clinical pharmacology of amiodarone: relationship of antiarrhythmic effects, dose and drug concentrations to intracellular inclusion bodies. J. Clin. Pharmacol. 1989;29(5):405–412. doi: 10.1002/j.1552-4604.1989.tb03352.x

37. Connolly S.J., Gupta R.N., Hoffert D., Roberts R.S. Concentration response relationships of amiodarone and desethylamiodarone. Am. Heart J. 1988;115(6):1208–1213. doi: 10.1016/0002- 8703(88)90010-5

38. Vereckei A., Blazovics A., Gyorgy I., Feher E., Toth M., Szenasi G., Zsinka A., Foldiak G., Feher J. The role of free radicals in the pathogenesis of amiodarone toxicity. J. Cardiovasc. Electrophysiol. 1993;4(2):161– 177. doi: 10.1111/j.1540-8167.1993.tb01220.x

39. Ibrahim Fouad G., R Mousa M. The protective potential of alpha lipoic acid on amiodarone-induced pulmonary fibrosis and hepatic injury in rats. Mol. Cell. Biochem. 2021;476(9):3433–3448. doi: 10.1007/ s11010-021-04173-7

40. Thu N.Q., Oh J.H., Tien N.T.N., Park S.M., Yen N.T.H., Phat N.K., Hung T.M., Nguyen H.T., Nguyen D.N., Yoon S., Kim D.H., Long N.Ph. The lipidome landscape of amiodarone toxicity: an in vivo lipid-centric multi-omics study. bioRxiv. 2025;2025.01.21.633980. doi: 10.1101/2025.01.21.633980

41. Hubel E., Fishman S., Holopainen M., Käkelä R., Shaffer O., Houri I., Zvibel I., Shibolet O. Repetitive amiodarone administration causes liver damage via adipose tissue ER stress-dependent lipolysis, leading to hepatotoxic free fatty acid accumulation. Am. J. Physiol. Gastrointest. Liver Physiol. 2021;321(3):G298– G307. doi: 10.1152/ajpgi.00458.2020

42. Martin W.J. 2nd, Kachel D.L., Vilen T., Natarajan V. Mechanism of phospholipidosis in amiodarone pulmonary toxicity. J. Pharmacol. Exp. Ther. 1989;251(1):272–278.

43. Kapatou E., Skyrlas A., Agelaki M.G., Pantos C., Kolettis T.M., Malamou-Mitsi V. Amiodarone attenuates apoptosis, but induces phospholipidosis in rat alveolar epithelial cells. J. Physiol. Pharmacol. 2010;61(6):671–677.

44. Simonen P., Lommi J., Lemström K., Tolva J., Sinisalo J., Gylling H. Amiodarone accumulates two cholesterol precursors in myocardium: A controlled clinical study. J. Intern. Med. 2023;294(4):506–514. doi: 10.1111/joim.13693

45. Bolt M.W., Card J.W., Racz W.J., Brien J.F., Massey T.E. Disruption of mitochondrial function and cellular ATP levels by amiodarone and N-desethylamiodarone in initiation of amiodarone-induced pulmonary cytotoxicity. J. Pharmacol. Exp. Ther. 2001;298(3):1280–1289.

46. Bețiu A.M., Chamkha I., Gustafsson E., Meijer E., Avram V.F., Åsander Frostner E., Ehinger J.K., Petrescu L., Muntean D.M., Elmér E. Cell-permeable succinate rescues mitochondrial respiration in cellular models of amiodarone toxicity. Int. J. Mol. Sci. 2021;22(21):11786. doi: 10.3390/ijms222111786

47. Liang H., Li H., Li F., Xiong X., Gao Y. Amiodarone advances the apoptosis of cardiomyocytes by repressing sigmar1 expression and blocking KCNH2-related potassium channels. Curr. Mol. Med. 2025;25(1):69–78. doi: 10.2174/01156652402657712 31129105108

48. Mulder J.E., Brien J.F., Racz W.J., Takahashi T., Massey T.E. Mechanisms of amiodarone and desethylamiodarone cytotoxicity in nontransformed human peripheral lung epithelial cells. J. Pharmacol. Exp. Ther. 2011;336(2):551–559. doi: 10.1124/jpet.110.173120

49. Di Matola T., D’Ascoli F., Fenzi G., Rossi G., Martino E., Bogazzi F., Vitale M. Amiodarone induces cytochrome c release and apoptosis through an iodineindependent mechanism. J. Clin. Endocrinol. Metab. 2000;85(11):4323–4330. doi: 10.1210/jcem.85.11.6995

50. Sarma J.S., Pei H., Venkataraman K. Role of oxidative stress in amiodarone-induced toxicity. J. Cardiovasc. Pharmacol. Ther. 1997;2(1):53–60. doi: 10.1177/107424849700200107

51. Papiris S.A., Triantafillidou C., Kolilekas L., Markoulaki D., Manali E.D. Amiodarone: review of pulmonary effects and toxicity. Drug Saf. 2010;33(7):539– 558. doi: 10.2165/11532320-000000000-00000

52. Kato R., Ijiri Y., Hayashi T. Amiodarone, unlike dronedarone, activates inflammasomes via its reactive metabolites: implications for amiodarone adverse reactions. Chem. Res. Toxicol. 2021;34(8):1860–1865. doi: 10.1021/acs.chemrestox.1c00127

53. Drapkina O.M., Imaeva A.E., Kutsenko V.A., Kapustina A.V., Balanova Yu.A., Maksimov S.A., Muromtseva G.A., Kotova M.B., Karamnova N.S., Evstifeeva S.E., … Shalnova S.A. Dyslipidemia in the Russian Federation: population data, associations with risk factors. Kardiovaskulyarnaya terapiya i profilaktika = Cardiovascular Therapy and Prevention. 2023;22(8S):3791. [In Russian]. doi: 10.15829/1728- 8800-2023-3791

54. Karimivaselabadi A., Karimi S., Mostafa B., Abdolmajid Gh., Bazrafshan M.R., Silvia B., Mehdi Sh., Dehghan A. Identification and analysis of dyslipidemia risk factors in a population-based study: data from the fasa persian cohort. Journal of Advanced Biomedical Sciences. 2024;14(1): 36–46. doi: 10.18502/ jabs.v14i1.14801

55. Abera A., Worede A., Hirigo A.T., Alemayehu R., Ambachew S. Dyslipidemia and associated factors among adult cardiac patients: a hospital-based comparative cross-sectional study. Eur. J. Med. Res. 2024;29(1):237. doi: 10.1186/s40001-024-01802-x

56. Shayeganpour A., Korashy H., Patel J.P., El-Kadi A.O., Brocks D.R. The impact of experimental hyperlipidemia on the distribution and metabolism of amiodarone in rat. Int. J. Pharm. 2008;361(1-2):78–86. doi: 10.1016/j.ijpharm.2008.05.019

57. Shayeganpour A., Jun A.S., Brocks D.R. Pharmacokinetics of Amiodarone in hyperlipidemic and simulated high fat-meal rat models. Biopharm. Drug Dispos. 2005;26(6):249–257. doi: 10.1002/bdd.457

58. Shayeganpour A., Lee S.D., Wasan K.M., Brocks D.R. The influence of hyperlipoproteinemia on in vitro distribution of amiodarone and desethylamiodarone in human and rat plasma. Pharm. Res. 2007;24(4):672–678. doi: 10.1007/s11095-006-9186-z

59. Allen L.B., Genaro-Mattos T.C., Anderson A., Porter N.A., Mirnics K., Korade Z. Amiodarone alters cholesterol biosynthesis through tissue-dependent inhibition of emopamil binding protein and dehydrocholesterol reductase 24. ACS Chem. Neurosci. 2020;11(10):1413–1423. doi: 10.1021/acschemneuro.0c00042

60. Pollak P.T., Tan M.H. Elevation of high-density lipoprotein cholesterol in humans during long-term therapy with amiodarone. Am. J. Cardiol. 1999;83(2):296– 300, A7. doi: 10.1016/s0002-9149(98)00846-7

61. Wiersinga W.M., Trip M.D., van Beeren M.H., Plomp T.A., Oosting H. An increase in plasma cholesterol independent of thyroid function during longterm amiodarone therapy. A dose-dependent relationship. Ann. Intern. Med. 1991;114(2):128–132. doi: 10.7326/0003-4819-114-2-128

62. Tsartsalis D., Korela D., Karlsson L.O., Foukarakis E., Svensson A., Anastasakis A., Venetsanos D., Aggeli C., Tsioufis C., Braunschweig F., Dragioti E., Charitakis E. Risk and protective factors for sudden cardiac death: an umbrella review of meta-analyses. Front. Cardiovasc. Med. 2022;9:848021. doi: 10.3389/ fcvm.2022.848021

63. Sørensen T.I.A. Forecasting the global obesity epidemic through 2050. Lancet. 2025;405(10481):756– 757. doi: 10.1016/S0140-6736(25)00260-0

64. Balanova Yu.A., Drapkina O.M., Kutsenko V.A., Imaeva A.E., Kontsevaya A.V., Maksimov S.A., Muromtseva G.A., Kotova M.B., Karamnova N.S., Evstifeeva S.E., … Shalnova S.A. Obesity in the Russian population during the COVID-19 pandemic and associated factors. Data from the ESSE-RF3 study. Kardiovaskulyarnaya terapiya i profilaktika = Cardiovascular Therapy and Prevention. 2023;22(8S):3793. [In Russian]. doi: 10.15829/1728-8800-2023-3793

65. Remme C.A. Sudden cardiac death in diabetes and obesity: mechanisms and therapeutic strategies. Can. J. Cardiol. 2022;38(4):418–426. doi: 10.1016/j. cjca.2022.01.001

66. Abdussalam A., Al-Agili M., Al Nebaihi H.M., Mayo P.R., Gabr R.Q., Brocks D.R. Dietary-induced obesity and changes in the biodistribution and metabolism of amiodarone in the rat. J. Pharm. Sci. 2018;107(11):2938–2945. doi: 10.1016/j. xphs.2018.06.032

67. Fukuchi H., Nakashima M., Araki R., Komiya N., Hayano M., Yano K., Sasaki H., Yukawa E. Effect of obesity on serum amiodarone concentration in Japanese patients: population pharmacokinetic investigation by multiple trough screen analysis. J. Clin. Pharm. Ther. 2009;34(3):329–336. doi: 10.1111/j.1365- 2710.2008.00987.x

68. Abdussalam A., Elshenawy O.H., Bin Jardan Y.A., El-Kadi A.O.S., Brocks D.R. The obesogenic potency of various high-caloric diet compositions in male rats, and their effects on expression of liver and kidney proteins involved in drug elimination. J. Pharm. Sci. 2017;106(6):1650–1658. doi: 10.1016/j. xphs.2017.02.002

69. Provotorov V.M., Glukhovsky M.L. Comparative efficacy of amiodarone and bisoprolol in treatment of ventricular premature beats in patients with metabolic syndrome. Ratsional’naya farmakoterapiya v kardiologii = Rational Pharmacotherapy in Cardiology. 2009;5(6):29–34. [In Russian]. doi: 10.20996/1819- 6446-2009-5-6-29-34

70. Le V.K., Kavanagh K.M., Raj S.R., Pollak P.T. Tolerance of high-dose oral amiodarone for cardioversion of atrial flutter. CJC Open. 2022;4(8):724–728. doi: 10.1016/j.cjco.2022.04.006

71. Ornelas-Loredo A., Kany S., Abraham V., Alzahrani Z., Darbar F.A., Sridhar A., Ahmed M., Alamar I., Menon A., Zhang M., … Darbar D. Association between obesity-mediated atrial fibrillation and therapy with sodium channel blocker antiarrhythmic drugs. JAMA Cardiol. 2020;5(1):57–64. doi: 10.1001/jamacardio.2019.4513

72. Sha R., Baines O., Hayes A., Tompkins K., Kalla M., Holmes A.P., O’Shea C., Pavlovic D. Impact of obesity on atrial fibrillation pathogenesis and treatment options. J. Am. Heart Assoc. 2024;13(1):e032277. doi: 10.1161/JAHA.123.032277

73. Koike H., Fujino T., Koike M., Shinohara M., Kitahara K., Kinoshita T., Yuzawa H., Suzuki T., Sato H., Fukunaga S., Kobayashi K., Ikeda T. Obesity is associated with the development of interstitial pneumonia under long-term administration of amiodarone in refractory atrial fibrillation patients. Int. Heart J. 2016;57(1):30–34. doi: 10.1536/ihj.15-276

74. Colby R., Geyer H. Amiodarone-induced pulmonary toxicity. JAAPA. 2017;30(11):23–26. doi: 10.1097/01.JAA.0000524713.17719.c8

75. Bourron O., Ciangura C., Bouillot J.L., Massias L., Poitou C., Oppert J.M. Amiodarone-induced hyperthyroidism during massive weight loss following gastric bypass. Obes. Surg. 2007;17(11):1525–1528. doi: 10.1007/s11695-008-9415-0

76. Osafehinti D., Rakhlin L., Park P., Resta C.A. Amiodarone-induced thyrotoxicosis after weight loss following sleeve gastrectomy. J. Endocr. Soc. 2020;4(Suppl 1):SAT-474. doi: 10.1210/jendso/ bvaa046.223

77. Lafuente-Lafuente C., Alvarez J.C., Leenhardt A., Mouly S., Extramiana F., Caulin C., Funck-Brentano C., Bergmann J.F. Amiodarone concentrations in plasma and fat tissue during chronic treatment and related toxicity. Br. J. Clin. Pharmacol. 2009;67(5):511–519. doi: 10.1111/j.1365- 2125.2009.03381.x

78. Mattar W., Juliar B., Gradus-Pizlo I., Kwo P.Y. Amiodarone hepatotoxicity in the context of the metabolic syndrome and right-sided heart failure. J. Gastrointestin Liver Dis. 2009;18(4):419–423.

79. GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study. Lancet. 2023;402(10397):203–234. doi: 10.1016/ S0140-6736(23)01301-6

80. Dedov I.I., Shestakova M.V., Vikulova O.K., Zheleznyakova A.V., Isakov M.A., Sazonova D.V., Mokrysheva N.G. Diabetes mellitus in the Russian Federation: dynamics of epidemiological indicators according to the Federal Register of Diabetes Mellitus for the period 2010–2022. Sakharnyy diabet = Diabetes Mellitus. 2023;26(2):104–123. [In Russian]. doi: 10.14341/ DM13035

81. Dedov I., Shestakova M., Mayorov A., Mokrysheva N., Andreeva E., Bezlepkina O., Peterkova V., Artemova E., Bardyugov P., Beshlieva D., … Yaroslavtseva M. Standards of Specialized Diabetes Care. 11th Edition. Sakharnyi diabet = Diabetes Mellitus. 2023;26(2S):1–157. [In Russian]. doi: 10.14341/ DM13042

82. ElSayed N.A., Aleppo G., Aroda V.R., Bannuru R.R., Brown F.M., Bruemmer D., Collins B.S., Hilliard M.E., Isaacs D., Johnson E.L., … on behalf of the American Diabetes Association. 2. Classification and diagnosis of diabetes: standards of care in diabetes-2023. Diabetes Care. 2023;46(Suppl 1):S19–S40. doi: 10.2337/dc23-S002

83. Gwilt P.R., Nahhas R.R., Tracewell W.G. The effects of diabetes mellitus on pharmacokinetics and pharmacodynamics in humans. Clin. Pharmacokinet. 1991;20(6):477–490. doi: 10.2165/00003088- 199120060-00004

84. Dostalek M., Akhlaghi F., Puzanovova M. Effect of diabetes mellitus on pharmacokinetic and pharmacodynamic properties of drugs. Clin. Pharmacokinet. 2012;51(8):481–499. doi: 10.2165/11631900- 000000000-00000

85. Nakamura K., Miyoshi T., Yoshida M., Akagi S., Saito Y., Ejiri K., Matsuo N., Ichikawa K., Iwasaki K., Naito T., … Ito H. Pathophysiology and treatment of diabetic cardiomyopathy and heart failure in patients with diabetes mellitus. Int. J. Mol. Sci. 2022;23(7):3587. doi: 10.3390/ijms23073587

86. Connolly S.J., Camm A.J., Halperin J.L., Joyner C., Alings M., Amerena J., Atar D., Avezum Á., Blomström P., Borggrefe M, … PALLAS Investigators. Dronedarone in high-risk permanent atrial fibrillation. N. Engl. J. Med. 2011;365(24):2268–2276. doi: 10.1056/NEJMoa1109867

87. Ito I., Hayashi Y., Kawai Y., Iwasaki M., Takada K., Kamibayashi T., Yamatodani A., Mashimo T. Diabetes mellitus reduces the antiarrhythmic effect of ion channel blockers. Anesth. Analg. 2006;103(3):545– 550. doi: 10.1213/01.ane.0000229709.29185.88

88. Zebis L.R., Christensen T.D., Thomsen H.F., Hjortdal V.E. Amiodarone protects diabetics and non-diabetics undergoing coronary artery bypass grafting equally. Scand. Cardiovasc. J. 2008;42(3):173–177. doi: 10.1080/14017430701798820

89. Lai J.H., Wang M.T., Wu C.C., Huang Y.L., Lu C.H., Liou J.T. Risk of severe hypoglycemic events from amiodarone-sulfonylureas interactions: A population-based nested case-control study. Pharmacoepidemiol. Drug Saf. 2020;29(8):842–853. doi: 10.1002/ pds.5034

90. Viswam D., Nair S.G., Patel V., Nagaraj. Ultra-short course of low-dose amiodarone-induced post-operative fatal pulmonary toxicity. J. Assoc. Physicians India. 2011;59:443–447.

91. Miyaki J., Souma S., Narumiya Y., Chiba S. Case of unilateral organizing pneumonia induced by amiodarone pulmonary toxicity. Nihon Kokyuki Gakkai Zasshi. 2009;47(5):393–398. [In Japanese].

92. Huang C.H., Lai Y.Y., Kuo Y.J., Yang S.C., Chang Y.J., Chang K.K., Chen W.K. Amiodarone and risk of liver cirrhosis: a nationwide, population-based study. Ther. Clin. Risk Manag. 2019;15:103–112. doi: 10.2147/TCRM.S174868

93. Lopes Dos Santos A., Lagarto M., Gouveia C. A rare case of intravenous amiodarone toxicity. Cureus. 2022;14(8):e27958. doi: 10.7759/cureus.27958

94. Auricchio A., Nisam S., Klein H.U. Perspectives: does amiodarone increase non-sudden deaths? If so, why? J. Interv. Card. Electrophysiol. 2000;4(4):569– 574. doi: 10.1023/a:1026505329169

95. Coceani M., Mariotti R. Is amiodarone safe in heart failure? BMJ. 2006;332(7537):317–318. doi: 10.1136/bmj.332.7537.317

96. Remme W.J., van Hoogenhuyze D.C. Hemodynamic profile of amiodarone during acute and longterm administration in patients with ventricular dysfunction. Cardioscience. 1990;1(3):169–176.

97. Muminov D.K., Rakhmatullaev A.M. Structural and functional state of the liver in patients with chronic heart failure. The American Journal of Medical Sciences and Pharmaceutical Research. 2024;6(09):11– 15. doi: 10.37547/TAJMSPR/Volume06Issue09-03

98. Klimczak-Tomaniak D., Andrzejczyk K., Abou Kamar S., Baart S., van Boven N., Akkerhuis K.M., Constantinescu A., Caliskan K., Simsek S., Germanse T., … Kardys I. Temporal evolution of liver function parameters predicts clinical outcome in chronic heart failure patients (Bio-SHiFT study). Cardiol. J. 2024;31(3):409–417. doi: 10.5603/cj.95174

99. Adamson C., Cowan L.M., de Boer R.A., Diez M., Drożdż J., Dukát A., Inzucchi S.E., Køber L., Kosiborod M.N., Ljungman C.E.A., … Jhund P.S. Liver tests and outcomes in heart failure with reduced ejection fraction: findings from DAPA-HF. Eur. J. Heart Fail. 2022;24(10):1856–1868. doi: 10.1002/ejhf.2649

100. Suzuki K., Claggett B., Minamisawa M., Packer M., Zile M.R., Rouleau J., Swedberg K., Lefkowitz M., Shi V., McMurray J.J.V., Zucker S.D., Solomon S.D. Liver function and prognosis, and influence of sacubitril/valsartan in patients with heart failure with reduced ejection fraction. Eur. J. Heart Fail. 2020;22(9):1662–1671. doi: 10.1002/ejhf.1853.


Review

Views: 81


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)