Peculiarities of inhibitory receptor expression on effector and regulatory T cells in the context of immune checkpoint inhibitor therapy
https://doi.org/10.18699/SSMJ20250503
Abstract
Inhibitory receptors PD-1, TIM-3, LAG-3, etc. – “immune checkpoints” – are expressed by activated effector T cells in order to limit the intensity of the immune response. Under the conditions of chronic infectious process and tumor growth, checkpoint receptors are expressed by T lymphocytes in a state of T cell exhaustion, characterized by a decrease in its proliferative, cytotoxic and cytokine-producing activity. Restoring the functional activity of T cells underlies the mechanism of action of therapeutic monoclonal antibodies – “checkpoint inhibitors”, such as anti-PD-1/PD-L1 and antiLAG-3 used in antitumor therapy. At the same time, checkpoint receptors are expressed by multiple cell populations, including regulatory T cells (T-regs), which suppress immune response. Data on the functions of inhibitory receptors on T-reg continue to be studied. In this article, we provide the recent knowledge on T-reg populations’ expression of inhibitory checkpoint receptors and how these relate to checkpoint inhibitor therapy’s outcomes.
Keywords
About the Authors
E. V. BatorovRussian Federation
Egor V. Batorov, candidate of medical sciences
630099, Novosibirsk, Yadrintsevskaya st., 14
630090, Novosibirsk, Pirogova st., 1
P. V. Vasilchenko
Russian Federation
Polina V. Vasilchenko
630099, Novosibirsk, Yadrintsevskaya st., 14
630090, Novosibirsk, Pirogova st., 1
E. R. Chernykh
Russian Federation
Elena R. Chernykh, doctor of medical sciences, professor, corresponding member of the RAS
630099, Novosibirsk, Yadrintsevskaya st., 14
References
1. Gellrich F.F., Schmitz M., Beissert S., Meier F. Anti-PD-1 and novel combinations in the treatment of melanoma-an update. J. Clin. Med. 2020;9(1):223. doi: 10.3390/jcm9010223
2. Fitzsimmons T.S., Singh N., Walker T.D.J., Newton C., Evans D.G.R., Crosbie E.J., Ryan N.A.J. Immune checkpoint inhibitors efficacy across solid cancers and the utility of PD-L1 as a biomarker of response: a systematic review and meta-analysis. Front. Med. (Lausanne). 2023;10:1192762. doi: 10.3389/fmed.2023.1192762
3. Sun C., Chen H., Wang Y., Zheng C. Safety and efficacy of PD-1 and PD-L1 inhibitors in relapsed and refractory Hodgkin’s lymphoma: a systematic review and meta-analysis of 20 prospective studies. Hematology. 2023;28(1):2181749. doi: 10.1080/16078454.2023.2181749
4. Lin N., Song Y., Zhu J. Immune checkpoint inhibitors in malignant lymphoma: Advances and perspectives. Chin. J. Cancer Res. 2020;32(3):303–318. doi: 10.21147/j.issn.1000-9604.2020.03.03
5. Das S., Johnson D.B. Immune-related adverse events and anti-tumor efficacy of immune checkpoint inhibitors. J. Immunother. Cancer. 2019;7(1):306. doi: 10.1186/s40425-019-0805-8
6. Hamanishi J., Mandai M., Matsumura N., Abiko K., Baba T., Konishi I. PD-1/PD-L1 blockade in cancer treatment: perspectives and issues. Int. J. Clin. Oncol. 2016;21(3):462–473. doi: 10.1007/s10147-016-0959-z
7. Simon S., Labarriere N. PD-1 expression on tumor-specific T cells: Friend or foe for immunotherapy? Oncoimmunology. 2017;7(1):e1364828. doi: 10.1080/2162402X.2017.1364828
8. Kinter A.L., Godbout E.J., McNally J.P., Sereti I., Roby G.A., O’Shea M.A., Fauci A.S. The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands. J. Immunol. 2008;181(10):6738–6746. doi: 10.4049/jimmunol.181.10.6738
9. Mujib S., Jones R.B., Lo C., Aidarus N., Clayton K., Sakhdari A., Benko E., Kovacs C., Ostrowski M.A. Antigen-independent induction of Tim-3 expression on human T cells by the common г-chain cytokines IL-2, IL-7, IL-15, and IL-21 is associated with proliferation and is dependent on the phosphoinositide 3-kinase pathway. J. Immunol. 2012;188(8):3745– 3756. doi: 10.4049/jimmunol.1102609
10. Batorov E.V., Ineshina A.D., Aristova T.A., Denisova V.V., Sizikova S.A., Batorova D.S., Ushakova G.Y., Shevela E.Y., Chernykh E.R. PD-1+ and TIM3+ T cells widely express common γ-chain cytokine receptors in multiple myeloma patients, and IL-2, IL7, IL-15 stimulation up-regulates PD-1 and TIM-3 on T cells. Oncology Research. 2024;32(10):1575–1587. doi: 10.32604/or.2024.047893
11. Wherry E.J., Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 2015;15(8):486–499. doi: 10.1038/nri3862
12. ElTanbouly M.A., Noelle R.J. Rethinking peripheral T cell tolerance: checkpoints across a T cell’s journey. Nat. Rev. Immunol. 2021;21(4):257–267. doi: 10.1038/s41577-020-00454-2
13. Franco F., Jaccard A., Romero P., Yu Y.R., Ho P.C. Metabolic and epigenetic regulation of T-cell exhaustion. Nat. Metab. 2020;2(10):1001–1012. doi: 10.1038/s42255-020-00280-9
14. van der Leun A.M., Thommen D.S., Schumacher T.N. CD8+ T cell states in human cancer: insights from single-cell analysis. Nat. Rev. Cancer. 2020;20(4):218–232. doi: 10.1038/s41568-019-0235-4
15. Abe B.T., Macian F. Uncovering the mechanisms that regulate tumor-induced T-cell anergy. Oncoimmunology. 2013;2(2):e22679. doi: 10.4161/onci.22679
16. Verma V., Shrimali R.K., Ahmad S., Dai W., Wang H., Lu S., Nandre R., Gaur P., Lopez J., Sade-Feldman M., … Khleif S.N. PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+ CD38hi cells and anti-PD-1 resistance. Nat. Immunol. 2019;20(9):1231– 1243. doi: 10.1038/s41590-019-0441-y
17. Zhao Y., Shao Q., Peng G. Exhaustion and senescence: two crucial dysfunctional states of T cells in the tumor microenvironment. Cell Mol. Immunol. 2020;17(1):27–35. doi: 10.1038/s41423-019-0344-8
18. Zhang J., He T., Xue L., Guo H. Senescent T cells: a potential biomarker and target for cancer therapy. EBioMedicine. 2021;68:103409. doi: 10.1016/j.ebiom.2021.103409
19. Moreira A., Gross S., Kirchberger M.C., Erdmann M., Schuler G., Heinzerling L. Senescence markers: Predictive for response to checkpoint inhibitors. Int. J. Cancer. 2019;144(5):1147–1150. doi: 10.1002/ijc.31763
20. Galluzzi L., Chan T.A., Kroemer G., Wolchok J.D., López-Soto A. The hallmarks of successful anticancer immunotherapy. Sci. Transl. Med. 2018;10(459):eaat7807. doi: 10.1126/scitranslmed.aat7807
21. Yarchoan M., Hopkins A., Jaffee E.M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 2017;377(25):2500–2501. doi: 10.1056/NEJMc1713444
22. Carbognin L., Pilotto S., Milella M., Vaccaro V., Brunelli M., Caliò A., Cuppone F., Sperduti I., Giannarelli D., Chilosi M., … Tortora G. Differential activity of nivolumab, pembrolizumab and MPDL3280A according to the tumor expression of programmed death-ligand-1 (PD-L1): sensitivity analysis of trials in melanoma, lung and genitourinary cancers. PLoS One. 2015;10(6):e0130142. doi: 10.1371/journal.pone.0130142
23. Doroshow D.B., Bhalla S., Beasley M.B., Sholl L.M., Kerr K.M., Gnjatic S., Wistuba II., Rimm D.L., Tsao M.S., Hirsch F.R. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 2021;18(6):345–362. doi: 10.1038/s41571-021-00473-5
24. Vranic S., Gatalica Z. PD-L1 testing by immunohistochemistry in immuno-oncology. Biomol. Biomed. 2023;23(1):15–25. doi: 10.17305/bjbms.2022.7953
25. Lu S., Stein J.E., Rimm D.L., Wang D.W., Bell J.M., Johnson D.B., Sosman J.A., Schalper K.A., Anders R.A., Wang H., … Taube J.M. Comparison of biomarker modalities for predicting response to PD-1/ PD-L1 checkpoint blockade: a systematic review and meta-analysis. JAMA Oncol. 2019;5(8):1195–1204. doi: 10.1001/jamaoncol.2019.1549
26. Roemer M.G., Advani R.H., Ligon A.H., Natkunam Y., Redd R.A., Homer H., Connelly C.F., Sun H.H., Daadi S.E., Freeman G.J., … Shipp M.A. PD-L1 and PD-L2 genetic alterations define classical hodgkin lymphoma and predict outcome. J. Clin. Oncol. 2016;34(23):2690–2697. doi: 10.1200/JCO.2016.66.4482
27. Jelinek T., Mihalyova J., Kascak M., Duras J., Hajek R. PD-1/PD-L1 inhibitors in haematological malignancies: update 2017. Immunology. 2017;152(3):357–371. doi: 10.1111/imm.12788
28. Armengol M., Santos J.C., Fernández -Serrano M., Profitós-Pelejà N., Ribeiro M.L., Roué G. Immune-checkpoint inhibitors in B-cell lymphoma. Cancers (Basel). 2021;13(2):214. doi: 10.3390/cancers13020214
29. Schoenfeld A.J., Hellmann M.D. Acquired resistance to immune checkpoint inhibitors. Cancer Cell. 2020;37(4):443–455. doi: 10.1016/j.ccell.2020.03.017
30. Yin Q., Wu L., Han L., Zheng X., Tong R., Li L., Bai L., Bian Y. Immune-related adverse events of immune checkpoint inhibitors: a review. Front Immunol. 2023;14:1167975. doi: 10.3389/fimmu.2023.1167975
31. Adashek J.J., Kato S., Ferrara R., Lo Russo G., Kurzrock R. Hyperprogression and immune checkpoint inhibitors: hype or progress? Oncologist. 2020;25(2):94– 98. doi: 10.1634/theoncologist.2019-0636
32. Beyer M., Schultze J.L. Regulatory T cells in cancer. Blood. 2006;108(3):804–811. doi: 10.1182/ blood-2006-02-002774
33. Itahashi K., Irie T., Nishikawa H. Regulatory T-cell development in the tumor microenvironment. Eur. J. Immunol. 2022;52(8):1216–1227. doi: 10.1002/eji.202149358
34. Huppert L.A., Green M.D., Kim L., Chow C., Leyfman Y., Daud A.I., Lee J.C. Tissue-specific Tregs in cancer metastasis: opportunities for precision immunotherapy. Cell Mol. Immunol. 2022;19(1):33–45. doi: 10.1038/s41423-021-00742-4
35. Santegoets S.J., Dijkgraaf E.M., Battaglia A., Beckhove P., Britten C.M., Gallimore A., Godkin A., Gouttefangeas C., de Gruijl T.D., Koenen H.J., … van der Burg S.H. Monitoring regulatory T cells in clinical samples: consensus on an essential marker set and gating strategy for regulatory T cell analysis by flow cytometry. Cancer Immunol. Immunother. 2015;64(10):1271– 1286. doi: 10.1007/s00262-015-1729-x
36. Freeborn R.A., Strubbe S., Roncarolo M.G. Type 1 regulatory T cell-mediated tolerance in health and disease. Front. Immunol. 2022;13:1032575. doi: 10.3389/fimmu.2022.1032575
37. Roncarolo M.G., Gregori S., Bacchetta R., Battaglia M., Gagliani N. The biology of T regulatory type 1 cells and their therapeutic application in immune-mediated diseases. Immunity. 2018;49(6):1004– 1019. doi: 10.1016/j.immuni.2018.12.001
38. Deng G. Tumor-infiltrating regulatory T cells: origins and features. Am. J. Clin. Exp. Immunol. 2018;7(5):81–87.
39. Paluskievicz C.M., Cao X., Abdi R., Zheng P., Liu Y., Bromberg J.S. T regulatory cells and priming the suppressive tumor microenvironment. Front. Immunol. 2019;10:2453. doi: 10.3389/fimmu.2019.02453
40. Fang R., Xie C., Long Y., Zhang C., Zhang Z., Chen L., Wei Y. Significance of peripheral blood Tregs in tumor: a narrative review. Ann. Blood 2020;5:34. doi: 10.21037/aob-20-53
41. Shang B., Liu Y., Jiang S.J., Liu Y. Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci. Rep. 2015;5:15179. doi: 10.1038/srep15179
42. Kos K., de Visser K.E. The multifaceted role of regulatory T cells in breast cancer. Annu. Rev. Cancer Biol. 2021;5:291–310. doi: 10.1146/annurev-cancerbio-042920-104912
43. Martinez L.M., Robila V., Clark N.M., Du W., Idowu M.O., Rutkowski M.R., Bos P.D. Regulatory T cells control the switch from in situ to invasive breast cancer. Front. Immunol. 2019;10:1942. doi: 10.3389/fimmu.2019.01942
44. Zhang Y., Lazarus J., Steele N.G., Yan W., Lee H.J., Nwosu Z.C., Halbrook C.J., Menjivar R.E., Kemp S.B., Sirihorachai V.R., … Pasca di Magliano M. Regulatory T-cell depletion alters the tumor microenvironment and accelerates pancreatic carcinogenesis. Cancer Discov. 2020;10(3):422–439. doi: 10.1158/2159-8290.CD-19-0958
45. Raimondi G., Shufesky W.J., Tokita D., Morelli A.E., Thomson A.W. Regulated compartmentalization of programmed cell death-1 discriminates CD4+CD25+ resting regulatory T cells from activated T cells. J. Immunol. 2006;176(5):2808–2816. doi: 10.4049/jimmunol.176.5.2808
46. Gautron A.S., Dominguez-Villar M., de Marcken M., Hafler D.A. Enhanced suppressor function of TIM-3+ FoxP3+ regulatory T cells. Eur. J. Immunol. 2014;44(9):2703–2711. doi: 10.1002/eji.201344392
47. Huang C.T., Workman C.J., Flies D., Pan X., Marson A.L., Zhou G., Hipkiss E.L., Ravi S., Kowalski J., Levitsky H.I., … Vignali D.A. Role of LAG-3 in regulatory T cells. Immunity. 2004;21(4):503–513. doi: 10.1016/j.immuni.2004.08.010
48. Joller N., Lozano E., Burkett P.R., Patel B., Xiao S., Zhu C., Xia J., Tan T.G., Sefik E., Yajnik V., … Kuchroo V.K. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity. 2014;40(4):569– 581. doi: 10.1016/j.immuni.2014.02.012
49. Camisaschi C., Casati C., Rini F., Perego M., de Filippo A., Triebel F., Parmiani G., Belli F., Rivoltini L., Castelli C. LAG-3 expression defines a subset of CD4(+)CD25(high)Foxp3(+) regulatory T cells that are expanded at tumor sites. J. Immu nol. 2010;184(11):6545–6551. doi: 10.4049/jimmunol.0903879
50. Yang Z.Z., Kim H.J., Wu H., Jalali S., Tang X., Krull J.E., Ding W., Novak A.J., Ansell S.M. TIGIT expression is associated with T-cell suppression and exhaustion and predicts clinical outcome and anti-PD-1 response in follicular lymphoma. Clin. Cancer Res. 2020;26(19):5217–5231. doi: 10.1158/1078-0432.CCR-20-0558
51. Banerjee H., Nieves-Rosado H., Kulkarni A., Murter B., McGrath K.V., Chandran U.R., Chang A., Szymczak-Workman A.L., Vujanovic L., Delgoffe G.M., Ferris R.L., Kane L.P. Expression of Tim-3 drives phenotypic and functional changes in Treg cells in secondary lymphoid organs and the tumor microenvironment. Cell Rep. 2021;36(11):109699. doi: 10.1016/j.celrep.2021.109699
52. Roessner P.M., Llaó Cid. L., Lupar E., Roider T., Bordas M., Schifflers C., Arseni L., Gaupel A.C., Kilpert F., Krötschel M., … Seiffert M. EOMES and IL-10 regulate antitumor activity of T regulatory type 1 CD4+ T cells in chronic lymphocytic leukemia. Leukemia. 2021;35(8):2311–2324. doi: 10.1038/s41375-021-01136-1
53. Karim R., Jordanova E.S., Piersma S.J., Kenter G.G., Chen L., Boer J.M., Melief C.J., van der Burg S.H. Tumor-expressed B7-H1 and B7-DC in relation to PD-1+ T-cell infiltration and survival of patients with cervical carcinoma. Clin. Cancer Res. 2009;15(20):6341–6347. doi: 10.1158/1078-0432.CCR-09-1652
54. Franceschini D., Paroli M., Francavilla V., Videtta M., Morrone S., Labbadia G., Cerino A., Mondelli M.U., Barnaba V. PD-L1 negatively regulates CD4+CD25+Foxp3+ Tregs by limiting STAT-5 phosphorylation in patients chronically infected with HCV. J. Clin. Invest. 2009;119(3):551–564. doi: 10.1172/JCI36604
55. Kamada T., Togashi Y., Tay C., Ha D., Sasaki A., Nakamura Y., Sato E., Fukuoka S., Tada Y., Tanaka A., … Nishikawa H. PD-1+ regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc. Natl. Acad. Sci. USA. 2019;116(20):9999– 10008. doi: 10.1073/pnas.1822001116
56. Jinushi M., Takehara T., Tatsumi T., Yamaguchi S., Sakamori R., Hiramatsu N., Kanto T., Ohkawa K., Hayashi N. Natural killer cell and hepatic cell interaction via NKG2A leads to dendritic cell-mediated induction of CD4 CD25 T cells with PD-1-dependent regulatory activities. Immunology. 2007;120(1):73–82. doi: 10.1111/j.1365-2567.2006.02479.x
57. Park H.J., Park J.S., Jeong Y.H., Son J., Ban Y.H., Lee B.H., Chen L., Chang J., Chung D.H., Choi I., Ha S.J. PD-1 upregulated on regulatory T cells during chronic virus infection enhances the suppression of CD8+ T cell immune response via the interaction with PD-L1 expressed on CD8+ T cells. J. Immunol. 2015;194(12):5801–5811. doi: 10.4049/jimmunol.1401936
58. Sega E.I., Leveson-Gower D.B., Florek M., Schneidawind D., Luong R.H., Negrin R.S. Role of lymphocyte activation gene-3 (Lag-3) in conventional and regulatory T cell function in allogeneic transplantation. PLoS One. 2014;9(1):e86551. doi: 10.1371/journal.pone.0086551
59. Do J.S., Visperas A., Sanogo Y.O., Bechtel J.J., Dvorina N., Kim S., Jang E., Stohlman S.A., Shen B., Fairchild R.L., Baldwin W.M III., Vignali D.A., Min B. An IL-27/Lag3 axis enhances Foxp3+ regulatory T cell-suppressive function and therapeutic efficacy. Mucosal. Immunol. 2016;9(1):137–145. doi: 10.1038/mi.2015.45
60. Chen X., Fosco D., Kline D.E., Meng L., Nishi S., Savage P.A., Kline J. PD-1 regulates extrathymic regulatory T-cell differentiation. Eur. J. Immunol. 2014;44(9):2603–2616. doi: 10.1002/eji.201344423
61. Stathopoulou C., Gangaplara A., Mallett G., Flomerfelt F.A., Liniany L.P., Knight D., Samsel L.A., Berlinguer-Palmini R., Yim J.J., Felizardo T.C., … Amarnath S. PD-1 inhibitory receptor downregulates asparaginyl endopeptidase and maintains Foxp3 transcription factor stability in induced regulatory T cells. Immunity. 2018;49(2):247–263.e7. doi: 10.1016/j.immuni.2018.05.006
62. Dong Y., Han Y., Huang Y., Jiang S., Huang Z., Chen R., Yu Z., Yu K., Zhang S. PD-L1 Is Expressed and promotes the expansion of regulatory T cells in acute myeloid leukemia. Front. Immunol. 2020;11:1710. doi: 10.3389/fimmu.2020.01710
63. Ellestad K.K., Thangavelu G., Ewen C.L., Boon L., Anderson C.C. PD-1 is not required for natural or peripherally induced regulatory T cells: Severe autoimmunity despite normal production of regulatory T cells. Eur. J. Immunol. 2014;44(12):3560–3572. doi: 10.1002/eji.201444688
64. Lowther D.E., Goods B.A., Lucca L.E., Lerner B.A., Raddassi K., van Dijk D., Hernandez A.L., Duan X., Gunel M., Coric V., … Hafler D.A. PD-1 marks dysfunctional regulatory T cells in malignant gliomas. JCI Insight. 2016;1(5):e85935. doi: 10.1172/jci.insight.85935
65. Wang W., Lau R., Yu D., Zhu W., Korman A., Weber J. PD1 blockade reverses the suppression of melanoma antigen-specific CTL by CD4+ CD25(Hi) regulatory T cells. Int. Immunol. 2009;21(9):1065–1077. doi: 10.1093/intimm/dxp072
66. McGee H.S., Yagita H., Shao Z., Agrawal D.K. Programmed Death-1 antibody blocks therapeutic effects of T-regulatory cells in cockroach antigen-induced allergic asthma. Am. J. Respir. Cell Mol. Biol. 2010;43(4):432–442. doi: 10.1165/rcmb.2009-0258OC
67. Yoshida K., Okamoto M., Sasaki J., Kuroda C., Ishida H., Ueda K., Ideta H., Kamanaka T., Sobajima A., Takizawa T., … Saito N. Anti-PD-1 antibody decreas es tumour-infiltrating regulatory T cells. BMC Cancer. 2020;20(1):25. doi: 10.1186/s12885-019-6499-y
68. Peligero C., Argilaguet J., Güerri-Fernandez R., Torres B., Ligero C., Colomer P., Plana M., Knobel H., García F., Meyerhans A. PD-l1 blockade differentially impacts regulatory T cells from HIV-infected individuals depending on plasma viremia. PLoS Pathog. 2015;11(12):e1005270. doi: 10.1371/journal.ppat.1005270
69. Dodagatta-Marri E., Meyer D.S., Reeves M.Q., Paniagua R., To M.D., Binnewies M., Broz M.L., Mori H., Wu D., Adoumie M., … Akhurst R.J. б-PD-1 therapy elevates Treg/Th balance and increases tumor cell pSmad3 that are both targeted by б-TGFв antibody to promote durable rejection and immunity in squamous cell carcinomas. J. Immunother. Cancer. 2019;7(1):62. doi: 10.1186/s40425-018-0493-9
70. Vick S.C., Kolupaev O.V., Perou C.M., Serody J.S. Anti-PD-1 checkpoint therapy can promote the function and survival of regulatory T cells. J. Immunol. 2021;207(10):2598–2607. doi: 10.4049/jimmunol.2001334
71. Wakiyama H., Kato T., Furusawa A., Okada R., Inagaki F., Furumoto H., Fukushima H., Okuyama S., Choyke P.L., Kobayashi H. Treg-dominant tumor microenvironment is responsible for hyperprogressive disease after PD-1 blockade therapy. Cancer Immunol. Res. 2022;10(11):1386–1397. doi: 10.1158/2326-6066.CIR-22-0041
72. van Gulijk M., van Krimpen A., Schetters S., Eterman M., van Elsas M., Mankor J., Klaase L., de Bruijn M., van Nimwegen M., van Tienhoven T., … van Hall T. PD-L1 checkpoint blockade promotes regulatory T cell activity that underlies therapy resistance. Sci. Immunol. 2023;8(83):eabn6173. doi: 10.1126/sciimmunol.abn6173
73. Kumagai S., Togashi Y., Kamada T., Sugiyama E., Nishinakamura H., Takeuchi Y., Vitaly K., Itahashi K., Maeda Y., Matsui S., … Nishikawa H. The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies. Nat. Immunol. 2020;21(11):1346–1358. doi: 10.1038/s41590-020-0769-3
74. Rauch D.A., Conlon K.C., Janakiram M., Brammer J.E., Harding J.C., Ye B.H., Zang X., Ren X., Olson S., Cheng X., … Ratner L. Rapid progression of adult T-cell leukemia/lymphoma as tumor-infiltrating Tregs after PD-1 blockade. Blood. 2019;134(17):1406– 1414. doi: 10.1182/blood.2019002038
75. Kumagai S., Koyama S., Itahashi K., Tanegashima T., Lin Y.T., Togashi Y., Kamada T., Irie T., Okumura G., Kono H., … Nishikawa H. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell. 2022;40(2):201–218.e9. doi: 10.1016/j.ccell.2022.01.001
76. Tawbi H.A., Schadendorf D., Lipson E.J., Ascierto P.A., Matamala L., Castillo Gutiérrez E., Rutkowski P., Gogas H.J., Lao C.D., de Menezes J.J., … RELATIVITY-047 Investigators. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N. Engl. J. Med. 2022;386(1):24–34. doi: 10.1056/NEJMoa2109970
77. Zhang Q., Chikina M., Szymczak-Workman A.L., Horne W., Kolls J.K., Vignali K.M., Normolle D., Bettini M., Workman C.J., Vignali D.A.A. LAG3 limits regulatory T cell proliferation and function in autoimmune diabetes. Sci. Immunol. 2017;2(9):eaah4569. doi: 10.1126/sciimmunol.aah4569
78. Cai L., Li Y., Tan J., Xu L., Li Y. Targeting LAG-3, TIM-3, and TIGIT for cancer immunotherapy. J. Hematol. Oncol. 2023;16(1):101. doi: 10.1186/ s13045-023-01499-1. Erratum in: J. Hematol. Oncol. 2023;16(1):105.
79. Gao X., Zhu Y., Li G., Huang H., Zhang G., Wang F., Sun J., Yang Q., Zhang X., Lu B. TIM-3 expression characterizes regulatory T cells in tumor tissues and is associated with lung cancer progression. PLoS One. 2012;7(2):e30676. doi: 10.1371/journal.pone.0030676
80. Sakuishi K., Ngiow S.F., Sullivan J.M., Teng M.W., Kuchroo V.K., Smyth M.J., Anderson A.C. TIM3+FOXP3+ regulatory T cells are tissue-specific promoters of T-cell dysfunction in cancer. Oncoimmunology. 2013;2(4):e23849. doi: 10.4161/onci.23849
81. Bu M., Shen Y., Seeger W.L., An S., Qi R., Sanderson J.A., Cai Y. Ovarian carcinoma-infiltrating regulatory T cells were more potent suppressors of CD8(+) T cell inflammation than their peripheral counterparts, a function dependent on TIM3 expression. Tumour. Biol. 2016;37(3):3949–3956. doi: 10.1007/s13277-015-4237-x
82. Pang N., Alimu X., Chen R., Muhashi M., Ma J., Chen G., Zhao F., Wang L., Qu J., Ding J. Activated Galectin-9/Tim3 promotes Treg and suppresses Th1 effector function in chronic lymphocytic leukemia. FASEB J. 2021;35(7):e21556. doi: 10.1096/fj.202100013R
83. Liu Z., McMichael E.L., Shayan G., Li J., Chen K., Srivastava R., Kane L.P., Lu B., Ferris R.L. Novel effector phenotype of Tim-3+ regulatory T cells leads to enhanced suppressive function in head and neck cancer patients. Clin. Cancer Res. 2018;24(18):4529– 4538. doi: 10.1158/1078-0432.CCR-17-1350
84. Liu J.F., Wu L., Yang L.L., Deng W.W., Mao L., Wu H., Zhang W.F., Sun Z.J. Blockade of TIM3 relieves immunosuppression through reducing regulatory T cells in head and neck cancer. J. Exp. Clin. Cancer Res. 2018;37(1):44. doi: 10.1186/s13046-018-0713-7
85. Oweida A., Hararah M.K., Phan A., Binder D., Bhatia S., Lennon S., Bukkapatnam S., van Court B., Uyanga N., Darragh L., … Karam S.D. Resistance to Radiotherapy and PD-L1 Blockade Is Mediated by TIM-3 Upregulation and Regulatory T-Cell Infiltration. Clin. Cancer Res. 2018; 24(21):5368–5380. doi: 10.1158/1078-0432.CCR-18-1038
86. Fuhrman C.A., Yeh W.I., Seay H.R., Saikumar Lakshmi P., Chopra G., Zhang L., Perry D.J., McClymont S.A., Yadav M., Lopez M.C., … Brusko T.M. Divergent phenotypes of human regulatory T cells expressing the receptors TIGIT and CD226. J. Immunol. 2015;195(1):145–155. doi: 10.4049/jimmunol.1402381
87. Fourcade J., Sun Z., Chauvin J.M., Ka M., Davar D., Pagliano O., Wang H., Saada S., Menna C., Amin R., … Zarour H.M. CD226 opposes TIGIT to disrupt Tregs in melanoma. JCI Insight. 2018;3(14):e121157. doi: 10.1172/jci.insight.121157
88. Chen F., Xu Y., Chen Y., Shan S. TIGIT enhances CD4+ regulatory T-cell response and mediates immune suppression in a murine ovarian cancer model. Cancer Med. 2020;9(10):3584–3591. doi: 10.1002/cam4.2976
89. Preillon J., Cuende J., Rabolli V., Garnero L., Mercier M., Wald N, Pappalardo A., Denies S., Jamart D., Michaux A.C., … Hoofd C. Restoration of T-cell Effector Function, Depletion of Tregs, and Direct Killing of Tumor Cells: The Multiple Mechanisms of Action of a-TIGIT Antagonist Antibodies. Mol. Cancer Ther. 2021;20(1):121–131. doi: 10.1158/1535-7163.MCT-20-0464
90. Zeng Q., Yuan X., Cao J., Zhao X., Wang Y., Liu B., Liu W., Zhu Z., Dou J. Mycophenolate mofetil enhances the effects of tacrolimus on the inhibitory function of regulatory T cells in patients after liver transplantation via PD-1 and TIGIT receptors. Immunopharmacol. Immunotoxicol. 2021;43(2):239–246. doi: 10.1080/08923973.2021.1891247.






























