Preview

Сибирский научный медицинский журнал

Расширенный поиск

Особенности экспрессии ингибиторных рецепторов на эффекторных и регуляторных Т-клетках в контексте терапии ингибиторами «контрольных точек» иммунного ответа

https://doi.org/10.18699/SSMJ20250503

Аннотация

Ингибиторные рецепторы PD-1, TIM-3, LAG-3 и др. – «контрольные точки» иммунного ответа (immune checkpoint, «чек-пойнт») – экспрессируются активированными эффекторными Т-лимфоцитами с целью ограничения интенсивности иммунного ответа. В условиях хронического инфекционного процесса и при опухолевом росте чек-пойнт-рецепторы экспрессируют Т-клетки в состоянии «истощения» (T cell exhaustion), характеризующемся снижением их пролиферативной, цитотоксической и цитокин-продуцирующей активности. Восстановление функциональной активности Т-клеток лежит в основе механизма действия терапевтических моноклональных антител – «чек-пойнт-ингибиторов», таких как анти-PD-1/PD-L1 и анти-LAG-3, используемые в противоопухолевой терапии. В то же время чек-пойнт-рецепторы экспрессируют многие другие популяции клеток, в том числе регуляторные Т-клетки (Т-рег), супрессирующие реакции иммунного ответа. Данные о функциях ингибиторных рецепторов на Т-рег продолжают изучаться. В настоящей публикации мы приводим современные представления об экспрессии ингибиторных чек-пойнт-рецепторов популяциями Т-рег и их связи с эффектами терапии чек-пойнт-ингибиторами.

Об авторах

Е. В. Баторов
НИИ фундаментальной и клинической иммунологии; Новосибирский государственный университет
Россия

Баторов Егор Васильевич, к.м.н.

630099, г. Новосибирск, ул. Ядринцевская, 14

630090, г. Новосибирск, ул. Пирогова, 1



П. В. Васильченко
НИИ фундаментальной и клинической иммунологии; Новосибирский государственный университет
Россия

Васильченко Полина Вячеславовна

630099, г. Новосибирск, ул. Ядринцевская, 14

630090, г. Новосибирск, ул. Пирогова, 1



Е. Р. Черных
НИИ фундаментальной и клинической иммунологии
Россия

Черных Елена Рэмовна, д.м.н., проф., чл.-корр. РАН

630099, г. Новосибирск, ул. Ядринцевская, 14



Список литературы

1. Gellrich F.F., Schmitz M., Beissert S., Meier F. Anti-PD-1 and novel combinations in the treatment of melanoma-an update. J. Clin. Med. 2020;9(1):223. doi: 10.3390/jcm9010223

2. Fitzsimmons T.S., Singh N., Walker T.D.J., Newton C., Evans D.G.R., Crosbie E.J., Ryan N.A.J. Immune checkpoint inhibitors efficacy across solid cancers and the utility of PD-L1 as a biomarker of response: a systematic review and meta-analysis. Front. Med. (Lausanne). 2023;10:1192762. doi: 10.3389/fmed.2023.1192762

3. Sun C., Chen H., Wang Y., Zheng C. Safety and efficacy of PD-1 and PD-L1 inhibitors in relapsed and refractory Hodgkin’s lymphoma: a systematic review and meta-analysis of 20 prospective studies. Hematology. 2023;28(1):2181749. doi: 10.1080/16078454.2023.2181749

4. Lin N., Song Y., Zhu J. Immune checkpoint inhibitors in malignant lymphoma: Advances and perspectives. Chin. J. Cancer Res. 2020;32(3):303–318. doi: 10.21147/j.issn.1000-9604.2020.03.03

5. Das S., Johnson D.B. Immune-related adverse events and anti-tumor efficacy of immune checkpoint inhibitors. J. Immunother. Cancer. 2019;7(1):306. doi: 10.1186/s40425-019-0805-8

6. Hamanishi J., Mandai M., Matsumura N., Abiko K., Baba T., Konishi I. PD-1/PD-L1 blockade in cancer treatment: perspectives and issues. Int. J. Clin. Oncol. 2016;21(3):462–473. doi: 10.1007/s10147-016-0959-z

7. Simon S., Labarriere N. PD-1 expression on tumor-specific T cells: Friend or foe for immunotherapy? Oncoimmunology. 2017;7(1):e1364828. doi: 10.1080/2162402X.2017.1364828

8. Kinter A.L., Godbout E.J., McNally J.P., Sereti I., Roby G.A., O’Shea M.A., Fauci A.S. The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands. J. Immunol. 2008;181(10):6738–6746. doi: 10.4049/jimmunol.181.10.6738

9. Mujib S., Jones R.B., Lo C., Aidarus N., Clayton K., Sakhdari A., Benko E., Kovacs C., Ostrowski M.A. Antigen-independent induction of Tim-3 expression on human T cells by the common г-chain cytokines IL-2, IL-7, IL-15, and IL-21 is associated with proliferation and is dependent on the phosphoinositide 3-kinase pathway. J. Immunol. 2012;188(8):3745– 3756. doi: 10.4049/jimmunol.1102609

10. Batorov E.V., Ineshina A.D., Aristova T.A., Denisova V.V., Sizikova S.A., Batorova D.S., Ushakova G.Y., Shevela E.Y., Chernykh E.R. PD-1+ and TIM3+ T cells widely express common γ-chain cytokine receptors in multiple myeloma patients, and IL-2, IL7, IL-15 stimulation up-regulates PD-1 and TIM-3 on T cells. Oncology Research. 2024;32(10):1575–1587. doi: 10.32604/or.2024.047893

11. Wherry E.J., Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 2015;15(8):486–499. doi: 10.1038/nri3862

12. ElTanbouly M.A., Noelle R.J. Rethinking peripheral T cell tolerance: checkpoints across a T cell’s journey. Nat. Rev. Immunol. 2021;21(4):257–267. doi: 10.1038/s41577-020-00454-2

13. Franco F., Jaccard A., Romero P., Yu Y.R., Ho P.C. Metabolic and epigenetic regulation of T-cell exhaustion. Nat. Metab. 2020;2(10):1001–1012. doi: 10.1038/s42255-020-00280-9

14. van der Leun A.M., Thommen D.S., Schumacher T.N. CD8+ T cell states in human cancer: insights from single-cell analysis. Nat. Rev. Cancer. 2020;20(4):218–232. doi: 10.1038/s41568-019-0235-4

15. Abe B.T., Macian F. Uncovering the mechanisms that regulate tumor-induced T-cell anergy. Oncoimmunology. 2013;2(2):e22679. doi: 10.4161/onci.22679

16. Verma V., Shrimali R.K., Ahmad S., Dai W., Wang H., Lu S., Nandre R., Gaur P., Lopez J., Sade-Feldman M., … Khleif S.N. PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+ CD38hi cells and anti-PD-1 resistance. Nat. Immunol. 2019;20(9):1231– 1243. doi: 10.1038/s41590-019-0441-y

17. Zhao Y., Shao Q., Peng G. Exhaustion and senescence: two crucial dysfunctional states of T cells in the tumor microenvironment. Cell Mol. Immunol. 2020;17(1):27–35. doi: 10.1038/s41423-019-0344-8

18. Zhang J., He T., Xue L., Guo H. Senescent T cells: a potential biomarker and target for cancer therapy. EBioMedicine. 2021;68:103409. doi: 10.1016/j.ebiom.2021.103409

19. Moreira A., Gross S., Kirchberger M.C., Erdmann M., Schuler G., Heinzerling L. Senescence markers: Predictive for response to checkpoint inhibitors. Int. J. Cancer. 2019;144(5):1147–1150. doi: 10.1002/ijc.31763

20. Galluzzi L., Chan T.A., Kroemer G., Wolchok J.D., López-Soto A. The hallmarks of successful anticancer immunotherapy. Sci. Transl. Med. 2018;10(459):eaat7807. doi: 10.1126/scitranslmed.aat7807

21. Yarchoan M., Hopkins A., Jaffee E.M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 2017;377(25):2500–2501. doi: 10.1056/NEJMc1713444

22. Carbognin L., Pilotto S., Milella M., Vaccaro V., Brunelli M., Caliò A., Cuppone F., Sperduti I., Giannarelli D., Chilosi M., … Tortora G. Differential activity of nivolumab, pembrolizumab and MPDL3280A according to the tumor expression of programmed death-ligand-1 (PD-L1): sensitivity analysis of trials in melanoma, lung and genitourinary cancers. PLoS One. 2015;10(6):e0130142. doi: 10.1371/journal.pone.0130142

23. Doroshow D.B., Bhalla S., Beasley M.B., Sholl L.M., Kerr K.M., Gnjatic S., Wistuba II., Rimm D.L., Tsao M.S., Hirsch F.R. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 2021;18(6):345–362. doi: 10.1038/s41571-021-00473-5

24. Vranic S., Gatalica Z. PD-L1 testing by immunohistochemistry in immuno-oncology. Biomol. Biomed. 2023;23(1):15–25. doi: 10.17305/bjbms.2022.7953

25. Lu S., Stein J.E., Rimm D.L., Wang D.W., Bell J.M., Johnson D.B., Sosman J.A., Schalper K.A., Anders R.A., Wang H., … Taube J.M. Comparison of biomarker modalities for predicting response to PD-1/ PD-L1 checkpoint blockade: a systematic review and meta-analysis. JAMA Oncol. 2019;5(8):1195–1204. doi: 10.1001/jamaoncol.2019.1549

26. Roemer M.G., Advani R.H., Ligon A.H., Natkunam Y., Redd R.A., Homer H., Connelly C.F., Sun H.H., Daadi S.E., Freeman G.J., … Shipp M.A. PD-L1 and PD-L2 genetic alterations define classical hodgkin lymphoma and predict outcome. J. Clin. Oncol. 2016;34(23):2690–2697. doi: 10.1200/JCO.2016.66.4482

27. Jelinek T., Mihalyova J., Kascak M., Duras J., Hajek R. PD-1/PD-L1 inhibitors in haematological malignancies: update 2017. Immunology. 2017;152(3):357–371. doi: 10.1111/imm.12788

28. Armengol M., Santos J.C., Fernández -Serrano M., Profitós-Pelejà N., Ribeiro M.L., Roué G. Immune-checkpoint inhibitors in B-cell lymphoma. Cancers (Basel). 2021;13(2):214. doi: 10.3390/cancers13020214

29. Schoenfeld A.J., Hellmann M.D. Acquired resistance to immune checkpoint inhibitors. Cancer Cell. 2020;37(4):443–455. doi: 10.1016/j.ccell.2020.03.017

30. Yin Q., Wu L., Han L., Zheng X., Tong R., Li L., Bai L., Bian Y. Immune-related adverse events of immune checkpoint inhibitors: a review. Front Immunol. 2023;14:1167975. doi: 10.3389/fimmu.2023.1167975

31. Adashek J.J., Kato S., Ferrara R., Lo Russo G., Kurzrock R. Hyperprogression and immune checkpoint inhibitors: hype or progress? Oncologist. 2020;25(2):94– 98. doi: 10.1634/theoncologist.2019-0636

32. Beyer M., Schultze J.L. Regulatory T cells in cancer. Blood. 2006;108(3):804–811. doi: 10.1182/ blood-2006-02-002774

33. Itahashi K., Irie T., Nishikawa H. Regulatory T-cell development in the tumor microenvironment. Eur. J. Immunol. 2022;52(8):1216–1227. doi: 10.1002/eji.202149358

34. Huppert L.A., Green M.D., Kim L., Chow C., Leyfman Y., Daud A.I., Lee J.C. Tissue-specific Tregs in cancer metastasis: opportunities for precision immunotherapy. Cell Mol. Immunol. 2022;19(1):33–45. doi: 10.1038/s41423-021-00742-4

35. Santegoets S.J., Dijkgraaf E.M., Battaglia A., Beckhove P., Britten C.M., Gallimore A., Godkin A., Gouttefangeas C., de Gruijl T.D., Koenen H.J., … van der Burg S.H. Monitoring regulatory T cells in clinical samples: consensus on an essential marker set and gating strategy for regulatory T cell analysis by flow cytometry. Cancer Immunol. Immunother. 2015;64(10):1271– 1286. doi: 10.1007/s00262-015-1729-x

36. Freeborn R.A., Strubbe S., Roncarolo M.G. Type 1 regulatory T cell-mediated tolerance in health and disease. Front. Immunol. 2022;13:1032575. doi: 10.3389/fimmu.2022.1032575

37. Roncarolo M.G., Gregori S., Bacchetta R., Battaglia M., Gagliani N. The biology of T regulatory type 1 cells and their therapeutic application in immune-mediated diseases. Immunity. 2018;49(6):1004– 1019. doi: 10.1016/j.immuni.2018.12.001

38. Deng G. Tumor-infiltrating regulatory T cells: origins and features. Am. J. Clin. Exp. Immunol. 2018;7(5):81–87.

39. Paluskievicz C.M., Cao X., Abdi R., Zheng P., Liu Y., Bromberg J.S. T regulatory cells and priming the suppressive tumor microenvironment. Front. Immunol. 2019;10:2453. doi: 10.3389/fimmu.2019.02453

40. Fang R., Xie C., Long Y., Zhang C., Zhang Z., Chen L., Wei Y. Significance of peripheral blood Tregs in tumor: a narrative review. Ann. Blood 2020;5:34. doi: 10.21037/aob-20-53

41. Shang B., Liu Y., Jiang S.J., Liu Y. Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci. Rep. 2015;5:15179. doi: 10.1038/srep15179

42. Kos K., de Visser K.E. The multifaceted role of regulatory T cells in breast cancer. Annu. Rev. Cancer Biol. 2021;5:291–310. doi: 10.1146/annurev-cancerbio-042920-104912

43. Martinez L.M., Robila V., Clark N.M., Du W., Idowu M.O., Rutkowski M.R., Bos P.D. Regulatory T cells control the switch from in situ to invasive breast cancer. Front. Immunol. 2019;10:1942. doi: 10.3389/fimmu.2019.01942

44. Zhang Y., Lazarus J., Steele N.G., Yan W., Lee H.J., Nwosu Z.C., Halbrook C.J., Menjivar R.E., Kemp S.B., Sirihorachai V.R., … Pasca di Magliano M. Regulatory T-cell depletion alters the tumor microenvironment and accelerates pancreatic carcinogenesis. Cancer Discov. 2020;10(3):422–439. doi: 10.1158/2159-8290.CD-19-0958

45. Raimondi G., Shufesky W.J., Tokita D., Morelli A.E., Thomson A.W. Regulated compartmentalization of programmed cell death-1 discriminates CD4+CD25+ resting regulatory T cells from activated T cells. J. Immunol. 2006;176(5):2808–2816. doi: 10.4049/jimmunol.176.5.2808

46. Gautron A.S., Dominguez-Villar M., de Marcken M., Hafler D.A. Enhanced suppressor function of TIM-3+ FoxP3+ regulatory T cells. Eur. J. Immunol. 2014;44(9):2703–2711. doi: 10.1002/eji.201344392

47. Huang C.T., Workman C.J., Flies D., Pan X., Marson A.L., Zhou G., Hipkiss E.L., Ravi S., Kowalski J., Levitsky H.I., … Vignali D.A. Role of LAG-3 in regulatory T cells. Immunity. 2004;21(4):503–513. doi: 10.1016/j.immuni.2004.08.010

48. Joller N., Lozano E., Burkett P.R., Patel B., Xiao S., Zhu C., Xia J., Tan T.G., Sefik E., Yajnik V., … Kuchroo V.K. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity. 2014;40(4):569– 581. doi: 10.1016/j.immuni.2014.02.012

49. Camisaschi C., Casati C., Rini F., Perego M., de Filippo A., Triebel F., Parmiani G., Belli F., Rivoltini L., Castelli C. LAG-3 expression defines a subset of CD4(+)CD25(high)Foxp3(+) regulatory T cells that are expanded at tumor sites. J. Immu nol. 2010;184(11):6545–6551. doi: 10.4049/jimmunol.0903879

50. Yang Z.Z., Kim H.J., Wu H., Jalali S., Tang X., Krull J.E., Ding W., Novak A.J., Ansell S.M. TIGIT expression is associated with T-cell suppression and exhaustion and predicts clinical outcome and anti-PD-1 response in follicular lymphoma. Clin. Cancer Res. 2020;26(19):5217–5231. doi: 10.1158/1078-0432.CCR-20-0558

51. Banerjee H., Nieves-Rosado H., Kulkarni A., Murter B., McGrath K.V., Chandran U.R., Chang A., Szymczak-Workman A.L., Vujanovic L., Delgoffe G.M., Ferris R.L., Kane L.P. Expression of Tim-3 drives phenotypic and functional changes in Treg cells in secondary lymphoid organs and the tumor microenvironment. Cell Rep. 2021;36(11):109699. doi: 10.1016/j.celrep.2021.109699

52. Roessner P.M., Llaó Cid. L., Lupar E., Roider T., Bordas M., Schifflers C., Arseni L., Gaupel A.C., Kilpert F., Krötschel M., … Seiffert M. EOMES and IL-10 regulate antitumor activity of T regulatory type 1 CD4+ T cells in chronic lymphocytic leukemia. Leukemia. 2021;35(8):2311–2324. doi: 10.1038/s41375-021-01136-1

53. Karim R., Jordanova E.S., Piersma S.J., Kenter G.G., Chen L., Boer J.M., Melief C.J., van der Burg S.H. Tumor-expressed B7-H1 and B7-DC in relation to PD-1+ T-cell infiltration and survival of patients with cervical carcinoma. Clin. Cancer Res. 2009;15(20):6341–6347. doi: 10.1158/1078-0432.CCR-09-1652

54. Franceschini D., Paroli M., Francavilla V., Videtta M., Morrone S., Labbadia G., Cerino A., Mondelli M.U., Barnaba V. PD-L1 negatively regulates CD4+CD25+Foxp3+ Tregs by limiting STAT-5 phosphorylation in patients chronically infected with HCV. J. Clin. Invest. 2009;119(3):551–564. doi: 10.1172/JCI36604

55. Kamada T., Togashi Y., Tay C., Ha D., Sasaki A., Nakamura Y., Sato E., Fukuoka S., Tada Y., Tanaka A., … Nishikawa H. PD-1+ regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc. Natl. Acad. Sci. USA. 2019;116(20):9999– 10008. doi: 10.1073/pnas.1822001116

56. Jinushi M., Takehara T., Tatsumi T., Yamaguchi S., Sakamori R., Hiramatsu N., Kanto T., Ohkawa K., Hayashi N. Natural killer cell and hepatic cell interaction via NKG2A leads to dendritic cell-mediated induction of CD4 CD25 T cells with PD-1-dependent regulatory activities. Immunology. 2007;120(1):73–82. doi: 10.1111/j.1365-2567.2006.02479.x

57. Park H.J., Park J.S., Jeong Y.H., Son J., Ban Y.H., Lee B.H., Chen L., Chang J., Chung D.H., Choi I., Ha S.J. PD-1 upregulated on regulatory T cells during chronic virus infection enhances the suppression of CD8+ T cell immune response via the interaction with PD-L1 expressed on CD8+ T cells. J. Immunol. 2015;194(12):5801–5811. doi: 10.4049/jimmunol.1401936

58. Sega E.I., Leveson-Gower D.B., Florek M., Schneidawind D., Luong R.H., Negrin R.S. Role of lymphocyte activation gene-3 (Lag-3) in conventional and regulatory T cell function in allogeneic transplantation. PLoS One. 2014;9(1):e86551. doi: 10.1371/journal.pone.0086551

59. Do J.S., Visperas A., Sanogo Y.O., Bechtel J.J., Dvorina N., Kim S., Jang E., Stohlman S.A., Shen B., Fairchild R.L., Baldwin W.M III., Vignali D.A., Min B. An IL-27/Lag3 axis enhances Foxp3+ regulatory T cell-suppressive function and therapeutic efficacy. Mucosal. Immunol. 2016;9(1):137–145. doi: 10.1038/mi.2015.45

60. Chen X., Fosco D., Kline D.E., Meng L., Nishi S., Savage P.A., Kline J. PD-1 regulates extrathymic regulatory T-cell differentiation. Eur. J. Immunol. 2014;44(9):2603–2616. doi: 10.1002/eji.201344423

61. Stathopoulou C., Gangaplara A., Mallett G., Flomerfelt F.A., Liniany L.P., Knight D., Samsel L.A., Berlinguer-Palmini R., Yim J.J., Felizardo T.C., … Amarnath S. PD-1 inhibitory receptor downregulates asparaginyl endopeptidase and maintains Foxp3 transcription factor stability in induced regulatory T cells. Immunity. 2018;49(2):247–263.e7. doi: 10.1016/j.immuni.2018.05.006

62. Dong Y., Han Y., Huang Y., Jiang S., Huang Z., Chen R., Yu Z., Yu K., Zhang S. PD-L1 Is Expressed and promotes the expansion of regulatory T cells in acute myeloid leukemia. Front. Immunol. 2020;11:1710. doi: 10.3389/fimmu.2020.01710

63. Ellestad K.K., Thangavelu G., Ewen C.L., Boon L., Anderson C.C. PD-1 is not required for natural or peripherally induced regulatory T cells: Severe autoimmunity despite normal production of regulatory T cells. Eur. J. Immunol. 2014;44(12):3560–3572. doi: 10.1002/eji.201444688

64. Lowther D.E., Goods B.A., Lucca L.E., Lerner B.A., Raddassi K., van Dijk D., Hernandez A.L., Duan X., Gunel M., Coric V., … Hafler D.A. PD-1 marks dysfunctional regulatory T cells in malignant gliomas. JCI Insight. 2016;1(5):e85935. doi: 10.1172/jci.insight.85935

65. Wang W., Lau R., Yu D., Zhu W., Korman A., Weber J. PD1 blockade reverses the suppression of melanoma antigen-specific CTL by CD4+ CD25(Hi) regulatory T cells. Int. Immunol. 2009;21(9):1065–1077. doi: 10.1093/intimm/dxp072

66. McGee H.S., Yagita H., Shao Z., Agrawal D.K. Programmed Death-1 antibody blocks therapeutic effects of T-regulatory cells in cockroach antigen-induced allergic asthma. Am. J. Respir. Cell Mol. Biol. 2010;43(4):432–442. doi: 10.1165/rcmb.2009-0258OC

67. Yoshida K., Okamoto M., Sasaki J., Kuroda C., Ishida H., Ueda K., Ideta H., Kamanaka T., Sobajima A., Takizawa T., … Saito N. Anti-PD-1 antibody decreas es tumour-infiltrating regulatory T cells. BMC Cancer. 2020;20(1):25. doi: 10.1186/s12885-019-6499-y

68. Peligero C., Argilaguet J., Güerri-Fernandez R., Torres B., Ligero C., Colomer P., Plana M., Knobel H., García F., Meyerhans A. PD-l1 blockade differentially impacts regulatory T cells from HIV-infected individuals depending on plasma viremia. PLoS Pathog. 2015;11(12):e1005270. doi: 10.1371/journal.ppat.1005270

69. Dodagatta-Marri E., Meyer D.S., Reeves M.Q., Paniagua R., To M.D., Binnewies M., Broz M.L., Mori H., Wu D., Adoumie M., … Akhurst R.J. б-PD-1 therapy elevates Treg/Th balance and increases tumor cell pSmad3 that are both targeted by б-TGFв antibody to promote durable rejection and immunity in squamous cell carcinomas. J. Immunother. Cancer. 2019;7(1):62. doi: 10.1186/s40425-018-0493-9

70. Vick S.C., Kolupaev O.V., Perou C.M., Serody J.S. Anti-PD-1 checkpoint therapy can promote the function and survival of regulatory T cells. J. Immunol. 2021;207(10):2598–2607. doi: 10.4049/jimmunol.2001334

71. Wakiyama H., Kato T., Furusawa A., Okada R., Inagaki F., Furumoto H., Fukushima H., Okuyama S., Choyke P.L., Kobayashi H. Treg-dominant tumor microenvironment is responsible for hyperprogressive disease after PD-1 blockade therapy. Cancer Immunol. Res. 2022;10(11):1386–1397. doi: 10.1158/2326-6066.CIR-22-0041

72. van Gulijk M., van Krimpen A., Schetters S., Eterman M., van Elsas M., Mankor J., Klaase L., de Bruijn M., van Nimwegen M., van Tienhoven T., … van Hall T. PD-L1 checkpoint blockade promotes regulatory T cell activity that underlies therapy resistance. Sci. Immunol. 2023;8(83):eabn6173. doi: 10.1126/sciimmunol.abn6173

73. Kumagai S., Togashi Y., Kamada T., Sugiyama E., Nishinakamura H., Takeuchi Y., Vitaly K., Itahashi K., Maeda Y., Matsui S., … Nishikawa H. The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies. Nat. Immunol. 2020;21(11):1346–1358. doi: 10.1038/s41590-020-0769-3

74. Rauch D.A., Conlon K.C., Janakiram M., Brammer J.E., Harding J.C., Ye B.H., Zang X., Ren X., Olson S., Cheng X., … Ratner L. Rapid progression of adult T-cell leukemia/lymphoma as tumor-infiltrating Tregs after PD-1 blockade. Blood. 2019;134(17):1406– 1414. doi: 10.1182/blood.2019002038

75. Kumagai S., Koyama S., Itahashi K., Tanegashima T., Lin Y.T., Togashi Y., Kamada T., Irie T., Okumura G., Kono H., … Nishikawa H. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell. 2022;40(2):201–218.e9. doi: 10.1016/j.ccell.2022.01.001

76. Tawbi H.A., Schadendorf D., Lipson E.J., Ascierto P.A., Matamala L., Castillo Gutiérrez E., Rutkowski P., Gogas H.J., Lao C.D., de Menezes J.J., … RELATIVITY-047 Investigators. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N. Engl. J. Med. 2022;386(1):24–34. doi: 10.1056/NEJMoa2109970

77. Zhang Q., Chikina M., Szymczak-Workman A.L., Horne W., Kolls J.K., Vignali K.M., Normolle D., Bettini M., Workman C.J., Vignali D.A.A. LAG3 limits regulatory T cell proliferation and function in autoimmune diabetes. Sci. Immunol. 2017;2(9):eaah4569. doi: 10.1126/sciimmunol.aah4569

78. Cai L., Li Y., Tan J., Xu L., Li Y. Targeting LAG-3, TIM-3, and TIGIT for cancer immunotherapy. J. Hematol. Oncol. 2023;16(1):101. doi: 10.1186/ s13045-023-01499-1. Erratum in: J. Hematol. Oncol. 2023;16(1):105.

79. Gao X., Zhu Y., Li G., Huang H., Zhang G., Wang F., Sun J., Yang Q., Zhang X., Lu B. TIM-3 expression characterizes regulatory T cells in tumor tissues and is associated with lung cancer progression. PLoS One. 2012;7(2):e30676. doi: 10.1371/journal.pone.0030676

80. Sakuishi K., Ngiow S.F., Sullivan J.M., Teng M.W., Kuchroo V.K., Smyth M.J., Anderson A.C. TIM3+FOXP3+ regulatory T cells are tissue-specific promoters of T-cell dysfunction in cancer. Oncoimmunology. 2013;2(4):e23849. doi: 10.4161/onci.23849

81. Bu M., Shen Y., Seeger W.L., An S., Qi R., Sanderson J.A., Cai Y. Ovarian carcinoma-infiltrating regulatory T cells were more potent suppressors of CD8(+) T cell inflammation than their peripheral counterparts, a function dependent on TIM3 expression. Tumour. Biol. 2016;37(3):3949–3956. doi: 10.1007/s13277-015-4237-x

82. Pang N., Alimu X., Chen R., Muhashi M., Ma J., Chen G., Zhao F., Wang L., Qu J., Ding J. Activated Galectin-9/Tim3 promotes Treg and suppresses Th1 effector function in chronic lymphocytic leukemia. FASEB J. 2021;35(7):e21556. doi: 10.1096/fj.202100013R

83. Liu Z., McMichael E.L., Shayan G., Li J., Chen K., Srivastava R., Kane L.P., Lu B., Ferris R.L. Novel effector phenotype of Tim-3+ regulatory T cells leads to enhanced suppressive function in head and neck cancer patients. Clin. Cancer Res. 2018;24(18):4529– 4538. doi: 10.1158/1078-0432.CCR-17-1350

84. Liu J.F., Wu L., Yang L.L., Deng W.W., Mao L., Wu H., Zhang W.F., Sun Z.J. Blockade of TIM3 relieves immunosuppression through reducing regulatory T cells in head and neck cancer. J. Exp. Clin. Cancer Res. 2018;37(1):44. doi: 10.1186/s13046-018-0713-7

85. Oweida A., Hararah M.K., Phan A., Binder D., Bhatia S., Lennon S., Bukkapatnam S., van Court B., Uyanga N., Darragh L., … Karam S.D. Resistance to Radiotherapy and PD-L1 Blockade Is Mediated by TIM-3 Upregulation and Regulatory T-Cell Infiltration. Clin. Cancer Res. 2018; 24(21):5368–5380. doi: 10.1158/1078-0432.CCR-18-1038

86. Fuhrman C.A., Yeh W.I., Seay H.R., Saikumar Lakshmi P., Chopra G., Zhang L., Perry D.J., McClymont S.A., Yadav M., Lopez M.C., … Brusko T.M. Divergent phenotypes of human regulatory T cells expressing the receptors TIGIT and CD226. J. Immunol. 2015;195(1):145–155. doi: 10.4049/jimmunol.1402381

87. Fourcade J., Sun Z., Chauvin J.M., Ka M., Davar D., Pagliano O., Wang H., Saada S., Menna C., Amin R., … Zarour H.M. CD226 opposes TIGIT to disrupt Tregs in melanoma. JCI Insight. 2018;3(14):e121157. doi: 10.1172/jci.insight.121157

88. Chen F., Xu Y., Chen Y., Shan S. TIGIT enhances CD4+ regulatory T-cell response and mediates immune suppression in a murine ovarian cancer model. Cancer Med. 2020;9(10):3584–3591. doi: 10.1002/cam4.2976

89. Preillon J., Cuende J., Rabolli V., Garnero L., Mercier M., Wald N, Pappalardo A., Denies S., Jamart D., Michaux A.C., … Hoofd C. Restoration of T-cell Effector Function, Depletion of Tregs, and Direct Killing of Tumor Cells: The Multiple Mechanisms of Action of a-TIGIT Antagonist Antibodies. Mol. Cancer Ther. 2021;20(1):121–131. doi: 10.1158/1535-7163.MCT-20-0464

90. Zeng Q., Yuan X., Cao J., Zhao X., Wang Y., Liu B., Liu W., Zhu Z., Dou J. Mycophenolate mofetil enhances the effects of tacrolimus on the inhibitory function of regulatory T cells in patients after liver transplantation via PD-1 and TIGIT receptors. Immunopharmacol. Immunotoxicol. 2021;43(2):239–246. doi: 10.1080/08923973.2021.1891247.


Рецензия

Просмотров: 29


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)