Targeting the feminized nature of prostate cancer exploring estrogen-driven metabolic reprogramming and its therapeutic intervention: а narrative review
https://doi.org/10.18699/SSMJ20250502
Abstract
Prostate cancer (PCa) has long been classified as an androgen-driven malignancy; however, mounting evidence underscores the pivotal role of estrogen in its initiation, progression, and therapeutic resistance. This review establishes that PCa exhibits intrinsic estrogen dependence through intratumoral aromatization, positioning it within the spectrum of estrogen-driven malignancies. Through integrative molecular analyses, we elucidate how estrogen orchestrates metabolic reprogramming, shifting prostate tumors toward enhanced lipid oxidation and glucose uptake a hallmark of glucolipotoxicity. Mechanistically, estrogen signaling, primarily via the PI3K/AKT pathway, drives the upregulation of carnitine palmitoyltransferase 1 and glucose transporter 1, fueling a metabolic storm characterized by oxidative stress, mitochondrial dysfunction, and chronic inflammatory signaling. This metabolic adaptation enables androgenindependent survival, presenting a critical vulnerability overlooked by conventional androgen-targeted therapies. Our findings necessitate a paradigm shift in the classification and treatment of PCa, advocating for a novel therapeutic framework targeting the estrogen–metabolic axis. We propose a precision strategy integrating aromatase inhibition, estrogen receptor blockade, and metabolic stress modulation to counteract castration-resistant disease. Recognizing PCa as an estrogen-driven, metabolically adaptive malignancy transforms its clinical understanding and therapeutic approach, demanding urgent reconsideration of current oncologic paradigms.
About the Authors
M. M. AklEgypt
Maher M. Akl
35516, Mansoura, Elgomhouria st., 25
A. Ahmed
Saudi Arabia
Amr Ahmed
13524, Riyadh, King Fahd Rd., 4499
References
1. Rawla P. Epidemiology of prostate cancer. World J. Oncol. 2019;10(2):63–89. doi: 10.14740/ wjon1191
2. Koochekpour S. Androgen receptor signaling and mutations in prostate cancer. Asian J. Androl. 2010;12(5):639–657. doi: 10.1038/aja.2010.89
3. Chen L., Xu Y.X., Wang Y.S., Ren Y.Y., Dong X.M., Wu P., Xie T., Zhang Q., Zhou J.L. Prostate cancer microenvironment: multidimensional regulation of immune cells, vascular system, stromal cells, and microbiota. Mol. cancer. 2024;23(1):229. doi: 10.1186/s12943-024-02137-1
4. Polotti C.F., Kim C.J., Chuchvara N., Polotti A.B., Singer E.A., Elsamra S. Androgen deprivation therapy for the treatment of prostate cancer: a focus on pharmacokinetics. Expert, Opin, Drug Metab, Toxicol. 2017;13(12):1265–1273. doi: 10.1080/17425255.2017.1405934
5. Nicholson T.M., Ricke W.A. Androgens and estrogens in benign prostatic hyperplasia: past, present and future. Differentiation. 2011;82(4-5):184–199. doi: 10.1016/j.diff.2011.04.006
6. Belluti S., Imbriano C., Casarini L. Nuclear estrogen receptors in prostate cancer: From genes to function. Cancers (Basel). 2023;15(18):4653. doi: 10.3390/cancers15184653
7. di Nardo G., Zhang C., Marcelli A.G., Gilardi G. Molecular and structural evolution of cytochrome P450 aromatase. Int. J. Mol. Sci. 2021;22(2):631. doi: 10.3390/ijms22020631
8. Maharjan C.K., Mo J., Wang L., Kim M.C., Wang S., Borcherding N., Vikas P., Zhang W. Natural and synthetic estrogens in chronic inflammation and breast cancer. Cancers (Basel). 2021;14(1):206. doi: 10.3390/cancers14010206
9. Ellem S.J., Risbridger G.P. Aromatase and regulating the estrogen:androgen ratio in the prostate gland. J. Steroid Biochem. Mol. Biol. 2010;118(4- 5):246–251. doi: 10.1016/j.jsbmb.2009.10.015
10. Coppé J.P., Desprez P.Y., Krtolic A., Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 2010;5:99–118. doi: 10.1146/annurevpathol-121808-102144
11. Golan R., Scovell J.M., Ramasamy R. Age-related testosterone decline is due to waning of both testicular and hypothalamic-pituitary function. Aging Male. 2015;18(3):201–204. doi: 10.3109/13685538.2015.1052392
12. Belluti S., Imbriano C., Casarini L. Nuclear estrogen receptors in prostate cancer: from genes to function. Cancers (Basel). 2023;15(18):4653. doi: 10.3390/cancers15184653
13. Pepe G., Locati M., Della Torre S., Mornata F., Cignarella A., Maggi A., Vegeto E. The estrogen–macrophage interplay in the homeostasis of the female reproductive tract. Hum. Reprod. Update. 2018;24(6):652–672. doi: 10.1093/humupd/dmy026
14. Kim K.K., Sheppard D., Chapman H.A. TGF-β1 signaling and tissue fibrosis. Cold Spring Harb. Perspect. Biol. 2018;10(4):a022293. doi: 10.1101/cshperspect.a022293
15. Tan P.Y., Chang C.W., Chng K.R., Wansa K.D., Sung W.K., Cheung E. Integration of regulatory networks by NKX3-1 promotes androgen-dependent prostate cancer survival. Mol. Cell. Biol. 2012;32(2):399– 414. doi: 10.1128/MCB.05958-11
16. Chimento A., de Luca A., Avena P., de Amicis F., Casaburi I., Sirianni R., Pezzi V. Estrogen receptors-mediated apoptosis in hormone-dependent cancers. Int. J. Mol. Sci. 2022;23(3):1242. doi: 10.3390/ijms23031242
17. Vermot A., Petit-Härtlein I., Smith S.M.E., Fieschi F. NADPH oxidases (NOX): an overview from discovery, molecular mechanisms to physiology and pathology. Antioxidants. 2021;10(6):890. doi: 10.3390/antiox10060890
18. di Zazzo E., Galasso G., Giovannelli P., di Donato M., Bilancio A., Perillo B., Sinisi A.A., Migliaccio A., Castoria G. Estrogen receptors in epithelial-mesenchymal transition of prostate cancer. Cancers(Basel). 2019;11(10):1418. doi: 10.3390/cancers11101418
19. Chin S.P., Dickinson J.L., Holloway A.F. Epigenetic regulation of prostate cancer. Clin. Epigenetics. 2011;2(2):151–169. doi: 10.1007/s13148-011-0041-7
20. Mair K.M., Gaw R., MacLean M.R. Obesity, estrogens and adipose tissue dysfunction – implications for pulmonary arterial hypertension. Pulm. Circ. 2020;10(3):2045894020952019. doi: 10.1177/2045894020952023
21. Prins G.S., Korach K.S. The role of estrogens and estrogen receptors in normal prostate growth and disease. Steroids. 2008;73(3):233–244. doi: 10.1016/j.steroids.2007.10.013.
22. Nelles J.L., Hu W.Y., Prins G.S. Estrogen action and prostate cancer. Expert. Rev. Endocrinol. Metab. 2011;6(3):437–451. doi: 10.1586/eem.11.20
23. di Zazzo E., Galasso G., Giovannelli P., di Donato M., di Santi A., Cernera G., Rossi V., Abbondanza C., Moncharmont B., Sinisi A.A., Castoria. G., Migliaccio A. Prostate cancer stem cells: the role of androgen and estrogen receptors. Oncotarget. 2016;7(1):193–208. doi: 10.18632/oncotarget.6220
24. Santen R.J., Petroni G.R., Fisch M.J., Myers C.E., Theodorescu D., Cohen R.B. Use of the aromatase inhibitor anastrozole in the treatment of patients with advanced prostate carcinoma. Cancer. 2001;92(8):2095–2101. doi: 002/1097-0142(20011015)92:83.0.co;2-y
25. Bayala B., Zoure A.A., Baron S., de Joussineau C., Simpore J., Lobaccaro J.M.A. Pharmacological modulation of steroid activity in hormone-dependent breast and prostate cancers: effect of some plant extract derivatives. Int. J. Mol. Sci. 2020;21(10):3690. doi: 10.3390/ijms21103690
26. Zhou Z., Qiao J.X., Shetty A., Wu G., Huang Y., Davidson N.E., Wan Y. Regulation of estrogen receptor signaling in breast carcinogenesis and breast cancer therapy. Cell. Mol. Life Sci. 2014;71(8):1549. doi: 10.1007/s00018-013-1376-3
27. Brait M., Banerjee M., Maldonado L., Ooki A., Loyo M., Guida E., Izumchenko E., Mangold L., Humphreys E., Rosenbaum E., … Hoque M.O. Promoter methylation of MCAM, ERα and ERβ in serum of early stage prostate cancer patients. Oncotarget. 2017;8(9):15431–15440. doi: 10.18632/oncotarget.14873
28. Valkenburg K.C., Graveel C.R., ZylstraDiegel C.R., Zhong Z., Williams B.O. Wnt/β-catenin signaling in normal and cancer stem cells. Cancers (Basel). 2011;3(2):2050–2079. doi: 10.3390/cancers3022050
29. Dananberg A., Striepen J., Rozowsky J.S., Petljak M. APOBEC mutagenesis in cancer development and susceptibility. Cancers (Basel). 2024;16(2):374. doi: 10.3390/cancers16020374
30. Lu J., Luo Y., Rao D., Wang T., Lei Z., Chen X., Zhang B., Li Y., Liu B., Xia L., Huang W. Myeloidderived suppressor cells in cancer: therapeutic targets to overcome tumor immune evasion. Exp. Hematol. Oncol. 2024;13(1):39. doi: 10.1186/s40164-024-00505-7
31. Bartkowiak-Wieczorek J., Jaros A., Gajdzińska A., Wojtyła-Buciora P., Szymański I., Szymaniak J., Janusz W., Walczak I., Jonaszka G., Bienert A. the dual faces of oestrogen: the impact of exogenous oestrogen on the physiological and pathophysiological functions of tissues and organs. Int. J. Mol. Sci. 2024;25(15):8167. doi: 10.3390/ijms25158167
32. Chimento A., de Luca A., Avena P., de Amicis F., Casaburi I., Sirianni R., Pezzi V. Estrogen receptors-mediated apoptosis in hormone-dependent cancers. Int. J. Mol. Sci. 2022;23(3):1242. doi: 10.3390/ijms23031242
33. Yaşar P., Ayaz G., User S.D., Güpür G., Muyan M. Molecular mechanism of estrogen-estrogen receptor signaling. Reprod. Med. Biol. 2016;16(1):4–20. doi: 10.1002/rmb2.12006
34. Eischen C.M., Woo D., Roussel M.F., Cleveland J.L. Apoptosis triggered by Myc-induced suppression of Bcl-X(L) or Bcl-2 is bypassed during lymphomagenesis. Mol. Cell. Biol. 2001;21(15):5063–5070. doi: 10.1128/MCB.21.15.5063-5070.2001
35. Mal R., Magner A., David J., Datta J., Vallabhaneni M., Kassem M., Manouchehri J., Willingham N., Stover D., Vandeusen J., … Cherian M.A. Estrogen receptor beta (ERβ): a ligand activated tumor suppressor. Front. Oncol. 2020;10:587386. doi: 10.3389/fonc.2020.587386
36. Jefferi N.E.S., Shamhari A.A., Noor Azhar N.K.Z., Shin J.G.Y., Kharir N.A.M., Azhar M.A., Hamid Z.A., Budin S.B., Taib I.S. The role of ERα and ERβ in castration-resistant prostate cancer and current therapeutic approaches. Biomedicines. 2023;11(3):826. doi: 10.3390/biomedicines11030826
37. Miziak P., Baran M., Błaszczak E., Przybyszewska-Podstawka A., Kałafut J., Smok-Kalwat J., Dmoszyńska-Graniczka M., Kiełbus M., Stepulak A. Estrogen receptor signaling in breast cancer. Cancers(Basel). 2023;15(19):4689. doi: 10.3390/cancers15194689
38. Gharibi B., Ghuman M.S., Hughes F.J. Akt- and Erk-mediated regulation of proliferation and differentiation during PDGFRβ-induced MSC self-renewal. Journal of Cellular and Molecular Medicine. 2012;16(11):2789–2801. doi: 10.1111/j.1582-4934.2012.01602.x
39. Seachrist D.D., Anstine L.J., Keri R.A. FOXA1: a pioneer of nuclear receptor action in breast cancer. Cancers (Basel). 2021;13(20):5205. doi: 10.3390/cancers13205205
40. Lonergan P.E., Tindall D.J. Androgen receptor signaling in prostate cancer development and progression. J. Carcinog. 2011;10:20. doi: 10.4103/1477-3163.83937
41. Gao L., Han B., Dong X. The androgen receptor and its crosstalk with the src kinase during castrateresistant prostate cancer progression. Front. Oncol. 2022;12:905398. doi: 10.3389/fonc.2022.905398
42. Pozas J., Álvarez Rodríguez S., Fernández V.A., Burgos J., Santoni M., Manneh Kopp R., Molina-Cerrillo J., Alonso-Gordoa T. Androgen receptor signaling inhibition in advanced castration resistance prostate cancer: what is expected for the near future? Cancers (Basel). 2022;14(24):6071. doi: 10.3390/cancers14246071
43. Chaudhri R.A., Olivares-Navarrete R., Cuenca N., Hadadi A., Boyan B.D., Schwartz Z. Membrane estrogen signaling enhances tumorigenesis and metastatic potential of breast cancer cells via estrogen receptor-α36 (ERα36). J. Biol. Chem. 2012;287(10):7169–7181. doi: 10.1074/jbc.M111.292946
44. Grivennikov S.I., Karin M. Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. 2010;21(1):11– 19. doi: 10.1016/j.cytogfr.2009.11.005
45. Voutsadakis I.A. Epithelial-mesenchymal transition (EMT) and regulation of EMT factors by steroid nuclear receptors in breast cancer: a review and in silico investigation. J. Clin. Med. 2016;5(1):11. doi: 10.3390/jcm5010011
46. Manavathi B., Dey O., Gajulapalli V.N., Bhatia R.S., Bugide S., Kumar R. Derailed estrogen signaling and breast cancer: an authentic couple. Endocr. Rev. 2013;34(1):1–32. doi: 10.1210/er.2011-1057
47. Bardin A., Boulle N., Lazennec G., Vignon F., Pujol P. Loss of ERbeta expression as a common step in estrogen-dependent tumor progression. Endocr. Relat. Cancer. 2004;11(3):537–551. doi: 10.1677/erc.1.00800
48. Khandrika L., Kumar B., Koul S., Maroni P., Koul H.K. Oxidative stress in prostate cancer. Cancer Lett. 2009;282(2):125–136. doi: 10.1016/j.canlet.2008.12.011
49. Bukato K., Kostrzewa T., Gammazza A.M., Gorska-Ponikowska M., Sawicki S. Endogenous estrogen metabolites as oxidative stress mediators and endometrial cancer biomarkers. Cell Commun. Signal. 2024;22(1):205. doi: 10.1186/s12964-024-01583-0
50. Schieber M., Chandel N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014;24(10):R453–R462. doi: 10.1016/j.cub.2014.03.034
51. Sampson N., Brunner E., Weber A., Puhr M., Schäfer G., Szyndralewiez C., Klocker H. Inhibition of Nox4-dependent ROS signaling attenuates prostate fibroblast activation and abrogates stromal-mediated protumorigenic interactions. Int. J. Cancer. 2018;143(2):383–395. doi: 10.1002/ijc.31316
52. Mittal M., Siddiqui M.R., Tran K., Reddy S.P., Malik A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014;20(7):1126–1167. doi: 10.1089/ars.2012.5149
53. Letafati A., Taghiabadi Z., Zafarian N., Tajdini R., Mondeali M., Aboofazeli A., Chichiarelli S., Saso L., Jazayeri S.M. Emerging paradigms: unmasking the role of oxidative stress in HPV-induced carcinogenesis. Infect. Agent. Cancer. 2024;19(1):30. doi: 10.1186/s13027-024-00581-8
54. Dawling S., Roodi N., Parl F.F. Methoxyestrogens exert feedback inhibition on cytochrome P450 1A1 and 1B1. Cancer Res. 2003;63(12):3127–3132.
55. Bolton J.L., Thatcher G.R. Potential mechanisms of estrogen quinone carcinogenesis. Chem. Res. Toxicol. 2008;21(1):93–101. doi: 10.1021/tx700191p
56. Aquilano K., Baldelli S., Ciriolo M.R. Glutathione: new roles in redox signaling for an old anti oxidant. Front. Pharmacol. 2014;5:196. doi: 10.3389/fphar.2014.00196
57. Srinivas U.S., Tan B.W.Q., Vellayappan B.A., Jeyasekharan A.D. ROS and the DNA damage response in cancer. Redox Biol. 2019;25:101084. doi: 10.1016/j.redox.2018.101084
58. Marvalim C., Datta A., Lee S.C. Role of p53 in breast cancer progression: An insight into p53 targeted therapy. Theranostics. 2023;13(4):1421–1442. doi: 10.7150/thno.81847
59. Gorini F., Scala G., Cooke M.S., Majello B., Amente S. Towards a comprehensive view of 8-oxo-7,8-dihydro-2’-deoxyguanosine: Highlighting the intertwined roles of DNA damage and epigenetics in genomic instability. DNA Repair. (Amst). 2021;97:103027. doi: 10.1016/j.dnarep.2020.103027
60. Lee E.Y., Muller W.J. Oncogenes and tumor suppressor genes. Cold Spring Harb. Perspect. Biol. 2010;2(10):a003236. doi: 10.1101/cshperspect.a003236
61. Tubbs A., Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer. Cell. 2017;168(4):644–656. doi: 10.1016/j.cell.2017.01.002
62. Han C., Deng Y., Xu W., Liu Z., Wang T., Wang S., Liu J., Liu X. The roles of tumor-associated macrophages in prostate cancer. J. Oncol. 2022;2022:8580043. doi: 10.1155/2022/8580043
63. Laffont S., Seillet C., Guéry J.C. Estrogen receptor-dependent regulation of dendritic cell development and function. Front. Immunol. 2017;8:108. doi: 10.3389/fimmu.2017.00108
64. Lai Z.Z., Yang H.L., Ha S.Y., Chang K.K., Mei J., Zhou W.J., Qiu X.M., Wang X.Q., Zhu R., Li D.J., Li M.Q. Cyclooxygenase-2 in Endometriosis. Int. J. Biol. Sci. 2019;15(13):2783–2797. doi: 10.7150/ijbs.35128
65. Affo S., Yu L.X., Schwabe R.F. The role of cancer-associated fibroblasts and fibrosis in liver cancer. Annu. Rev. Pathol. 2017;12:153–186. doi: 10.1146/annurev-pathol-052016-100322
66. Guo T., Xu J. Cancer-associated fibroblasts: a versatile mediator in tumor progression, metastasis, and targeted therapy. Cancer Metastasis Rev. 2024;43(3):1095–1116. doi: 10.1007/s10555-024-10186-7
67. Trenti A., Tedesco S., Boscaro C., Trevisi L., Bolego C., Cignarella A. Estrogen, angiogenesis, immunity and cell metabolism: solving the puzzle. Int. J. Mol. Sci. 2018;19(3):859. doi: 10.3390/ijms19030859
68. Fidelito G., Watt M.J., Taylor R.A. Personalized medicine for prostate cancer: is targeting metabolism a reality? Front. Oncol. 2022;11:778761. doi: 10.3389/fonc.2021.778761
69. Xie F., Li X., Xu Y., Cheng D., Xia X., Lv X., Yuan G., Peng C. Estrogen mediates an atheroscleroticprotective action via estrogen receptor alpha/SREBP-1 signaling. Front. Cardiovasc. Med. 2022;9:895916. doi: 10.3389/fcvm.2022.895916
70. Bonkhoff H. Estrogen receptor signaling in prostate cancer: Implications for carcinogenesis and tumor progression. Prostate. 2018;78(1):2–10. doi: 10.1002/pros.23446
71. Yao S., Till C., Kristal A.R., Goodman P.J., Hsing A.W., Tangen C.M., Platz E.A., Stanczyk F.Z., Reichardt J.K., Tang L., … Hoque A. Serum estrogen levels and prostate cancer risk in the prostate cancer prevention trial: a nested case-control study. Cancer Causes Control. 2011;22(8):1121–1131. doi: 10.1007/s10552-011-9787-7
72. Karantanos T., Corn P.G., Thompson T.C. Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene. 2013;32(49):5501– 5511. doi: 10.1038/onc.2013.206
73. van Londen G.J., Perera S., Vujevich K., Rastogi P., Lembersky B., Brufsky A., Vogel V., Greenspan S.L. The impact of an aromatase inhibitor on body composition and gonadal hormone levels in women with breast cancer. Breast Cancer Res. Treat. 2011;125(2):441–446. doi: 10.1007/s10549-010-1223-2
74. Kelloff G.J., Lubet R.A., Lieberman R., Eisenhauer K., Steele V.E., Crowell J.A., Hawk E.T., Boone C.W., Sigman C.C. Aromatase inhibitors as potential cancer chemopreventives. Cancer Epidemiol. Biomarkers Prev. 1998;7(1):65–78.
75. Berry J. Are all aromatase inhibitors the same? A review of controlled clinical trials in breast cancer. Clin. Ther. 2005;27(11):1671–1684. doi: 10.1016/j.clinthera.2005.11.013
76. Bosland M.C. The role of estrogens in prostate carcinogenesis: a rationale for chemoprevention. Rev. Urol. 2005;7(Suppl 3):S4–S10.
77. Hu W.Y., Shi G.B., Lam H.M., Hu D.P., Ho S.M., Madueke I.C., Kajdacsy-Balla A., Prins G.S. Estrogen-initiated transformation of prostate epithelium derived from normal human prostate stem-progenitor cells. Endocrinology. 2011;152(6):2150–2163. doi: 10.1210/en.2010-1377
78. Caldon C.E. Estrogen signaling and the DNA damage response in hormone dependent breast cancers. Front. Oncol. 2014;4:106. doi: 10.3389/fonc.2014.00106
79. Paterni I., Granchi C., Katzenellenbogen J.A., Minutolo F. Estrogen receptors alpha (ERα) and beta (ERβ): subtype-selective ligands and clinical potential. Steroids. 2014;90:13–29. doi: 10.1016/j.steroids.2014.06.012
80. Božović A., Mandušić V., Todorović L., Krajnović M. Estrogen receptor beta: the promising biomarker and potential target in metastases. Int. J. Mol. Sci. 2021;22(4):1656. doi: 10.3390/ijms22041656
81. Miller W.R., Stuart M., Sahmoud T., Dixon J.M. Anastrozole (‘Arimidex’) blocks oestrogen synthesis both peripherally and within the breast in postmenopausal women with large operable breast can cer. Br. J. Cancer. 2002;87(9):950–955. doi: 10.1038/sj.bjc.6600587
82. Ellem S.J., Risbridger G.P. Aromatase and prostate cancer. Minerva Endocrinol. 2006;31(1):1–12.
83. Allott E.H., Masko E.M., Freedland S.J. Obesity and prostate cancer: weighing the evidence. Eur. Urol. 2013;63(5):800–809. doi: 10.1016/j.eururo.2012.11.013
84. Khatpe A.S., Adebayo A.K., Herodotou C.A., Kumar B., Nakshatri H. Nexus between PI3K/AKT and estrogen receptor signaling in breast cancer. Cancers (Basel). 2021;13(3):369. doi: 10.3390/cancers13030369
85. Stabile L.P., Farooqui M., Kanterewicz B., Abberbock S., Kurland B.F., Diergaarde B., Siegfried J.M. Preclinical evidence for combined use of aromatase inhibitors and NSAIDs as preventive agents of tobaccoinduced lung cancer. J. Thorac. Oncol. 2018;13(3):399– 412. doi: 10.1016/j.jtho.2017.11.126
86. Tong D. Selective estrogen receptor modulators contribute to prostate cancer treatment by regulating the tumor immune microenvironment. J. Immunother. Cancer. 2022;10(4):e002944. doi: 10.1136/jitc-2021-002944
87. Kawiak A., Kostecka A. Regulation of Bcl2 family proteins in estrogen receptor-positive breast cancer and their implications in endocrine therapy. Cancers (Basel). 2022;14(2):279. doi: 10.3390/cancers14020279
88. Misirkic Marjanovic M.S., Vucicevic L.M., Despotovic A.., Stamenkovic M.M., Janjetovic K.D. Dual anticancer role of metformin: an old drug regulating AMPK dependent/independent pathways in metabolic, oncogenic/tumorsuppresing and immunity context. Am. J. Cancer Res. 2021;11(11):5625–5643.
89. Chong R.W., Vasudevan V., Zuber J., Solomon S.S. Metformin has a positive therapeutic effect on prostate cancer in patients with type 2 diabetes mellitus. Am. J. Med. Sci. 2016;351(4):416–419. doi: 10.1016/j.amjms.2016.01.013
90. Akl M.M., Ahmed A. Exploring the interplay between the warburg effect and glucolipotoxicity in cancer development: a novel perspective on cancer etiology. Adv. Pharm. Bull. 2024;14(3):705–713. doi: 10.34172/apb.2024.049.






























