3D modeling of the renal arterial bed: comparative analysis of visualization methods (ultrasonography, computed tomography and magnetic resonance imaging)
https://doi.org/10.18699/SSMJ20250501
Abstract
Modern imaging techniques provide various opportunities for assessing vascular anatomy, but their comparative effectiveness in creating accurate three-dimensional models of the renal arterial bed remains poorly understood.
Material and methods. A systematic review of the scientific literature for the period 2005–2022 was conducted using the PubMed, Scopus, Web of Science and eLIBRARY.RU databases. Technical characteristics, diagnostic capabilities and limitations of ultrasonography, computed tomography and magnetic resonance imaging were analyzed.
Results. Ultrasonography is an accessible screening method, but has limitations in constructing accurate 3D models. Computed tomography angiography provides the highest spatial resolution and detailing of vascular architecture, but is associated with radiation exposure and the risk of nephropathy. Magnetic resonance imaging represents an optimal balance between visualization quality and safety, especially with the use of non-contrast techniques and dynamic sequences.
Conclusions. It is advisable to use a comprehensive approach using complementary visualization methods to create accurate threedimensional models of renal arterial vessels, which allows compensating for the limitations of each individual method. The introduction of modern 3D modeling technologies into clinical practice helps improve preoperative planning and increase the safety of organ-preserving kidney surgeries, which is of fundamental importance for a personalized approach in modern urology and vascular surgery.
About the Authors
Sh. I. AkbaevRussian Federation
Shamil’ I. Akbaev
364907, Grozny, Aslanbeka Sheripova st., 32
Z. U. Lechiev
Russian Federation
Zelimkhan U. Lechiev
364907, Grozny, Aslanbeka Sheripova st., 32
I. U. Vagabov
Russian Federation
Islam U. Vagabov, candidate of medical sciences
364907, Grozny, Aslanbeka Sheripova st., 32
Kh. M. Bataev
Russian Federation
Khizir M. Bataev, doctor of medical sciences, professor
364907, Grozny, Aslanbeka Sheripova st., 32
Kh. A. Abduvosidov
Russian Federation
Khurshed A. Abduvosidov, doctor of medical sciences
125080, Moscow, Volokolamskoe hwy., 1
Yu. V. Dovgyallo
Russian Federation
Iuliya V. Dovgyallo, doctor of medical sciences
400066, Volgograd, Pavshikh Bortsov sq., 1
E. S. Kafarov
Russian Federation
Edgar S. Kafarov, doctor of medical sciences, associate professor
364907, Grozny, Aslanbeka Sheripova st., 32
S. V., Fedorov
Russian Federation
Sergei V. Fedorov, doctor of medical sciences
450008, Ufa, Lenina st., 3
S. T. Guseynova
Russian Federation
Sabina T. Guseynova, doctor of medical sciences
367000, Makhachkala, Lenina sq., 1
References
1. Kolsanov A.V., Ivanova V.D., Nazaryan A.K., Yaremin B.I., Chaplygin S.S., Myakotnykh M.N. Variant three-dimensional anatomy of the renal arteries: the clinical application. Morfologicheskiye vedomosti = Morphological Newsletter. 2016;24(4):46–52. [In Russian]. doi: 10.20340/mv-mn
2. Kolsanov A.V., Ivanova V.D., Chaplygin S.S., Yaremin B.I., Nazaryan A.K., Yunusov R.R. The problems of variant anatomy of the renal arteries. Byulleten’ meditsinskikh internet-konferentsiy = Bulletin of Medical Internet Conferences. 2017;7(12):1655–1657. [In Russian].
3. Dokaeva T.S., Kafarov E.S., Verzikhanov A.Z. Structural and quantitative analysis of the segmental arteries of the human kidney. Zhurnal teoreticheskoy, klinicheskoy i eksperimental’noy morfologii = Journal of Theoretical, Clinical and Experimental Morphology. 2021;2(1-2):49–59. [In Russian]. doi: 10.28942/jtcem.v3i1-2.167
4. Trunz L.M., Balasubramanya R. Doppler renal assessment, protocols, and interpretation. In: StatPearls. Treasure Island (FL): StatPearls Publishing; June 5, 2023.
5. Fenster A., Parraga G., Bax J. Three-dimensional ultrasound scanning. Interface Focus. 2011;1(4):503– 519. doi: 10.1098/rsfs.2011.0019
6. Picot P.A., Rickey D.W., Mitchell R., Rankin R.N., Fenster A. Three-dimensional colour Doppler imaging. Ultrasound Med. Biol. 1993;19(2):95–104. doi: 10.1016/0301-5629(93)90001-5
7. Pretorius D.H., Nelson T.R., Jaffe J.S. 3-dimensional sonographic analysis based on color flow Doppler and gray scale image data: a preliminary report. J. Ultrasound Med. 1992;11(5):225–232. doi: 10.7863/jum.1992.11.5.225
8. Pourtaherian A., Scholten H., Kusters L., Zinger S., Mihajlovic N., Kolen A., Zou F., Ng G., Korsten H., de With P.H.N. Medical instrument detection in 3-Dimensional ultrasound data volumes. IEEE Trans. Med. Imaging. 2017;36(8):1664–1675. doi: 10.1109/TMI.2017.2692302
9. Vagabov I.U., Zenin O.K., Kafarov E.S. 3-D structural analysis of human kidney’s arterial channel branching variants. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Meditsinskiye nauki = University Proceedings. Volga Region. Medical Sciences. 2020;(3):48–57. [In Russian]. doi: 10.21685/2072-3032-2020-3-5
10. Kolsanov A.V., Ivanova V.D., Gelashvili O.A., Nazaryan A.K. Clinical anatomy of the renal arteries according to computer modeling. Morfologiya = Morphology. 2019; 155(3):28–32. [In Russian].
11. Glybochko P.V., Alyaev Yu.G., Ternovoy N.K., Dzeranov N.K., Akhvlediani N.D., Fiev D.N., Khohlachev S.B., Petrovsky N.V., Matyukhov I.P., Pesegov S.V. Computer-assisted simulation as an innovation technique in diagnosis and planning of treatment of patients with surgical kidney diseases. Ural’skiy meditsinskiy zhurnal = Ural Medical Journal. 2012;(9):84– 87. [In Russian].
12. Majos M., Stefańczyk L., Szemraj-Rogucka Z., Elgalal M., De Caro R., Macchi V., Polguj M. Does the type of renal artery anatomic variant determine the diameter of the main vessel supplying a kidney? A study based on CT data with a particular focus on the presence of multiple renal arteries. Surg. Radiol. Anat. 2018;40(4):381–388. doi: 10.1007/s00276-017-1930-z
13. Amparore D., Pecoraro A., Piramide F., Verri P., Checcucci E., de Cillis S., Piana A., Burgio M., Di Dio M., Manfredi M., Fiori C., Porpiglia F. Three-dimensional imaging reconstruction of the kidney’s anatomy for a tailored minimally invasive partial nephrectomy: A pilot study. Asian Journal of Urology. 2022;9(3):263–271. doi: 10.1016/j.ajur.2022.06.003
14. Porpiglia F., Amparore D., Checcucci E., Manfredi M., Stura I., Migliaretti G., Autorino R., Ficarra V., Fiori C. Three-dimensional virtual imaging of renal tumours: a new tool to improve the accuracy of nephrometry scores. BJU Int. 2019;124(6):945–954. doi: 10.1111/bju.14894
15. Buffi N., Lista G., Larcher A., Lughezzani G., Ficarra V., Cestari A., Lazzeri M., Guazzoni G. Margin, ischemia, and complications (MIC) score in partial nephrectomy: a new system for evaluating achievement of optimal outcomes in nephron-sparing surgery. Eur. Urol. 2012;62(4):617–618. doi: 10.1016/j.eururo.2012.06.001
16. Koetzier L.R., Mastrodicasa D., Szczykutowicz T.P., van der Werf N.R., Wang A.S., Sandfort V., van der Molen A.J., Fleischmann D., Willemink M.J. Deep learning image reconstruction for CT: technical principles and clinical prospects. Radiology. 2023;306(3):e221257. doi: 10.1148/radiol.221257
17. Ramazanli B., Yagmur O., Sarioglu E.C., Salman H.E. Modeling techniques and boundary conditions in abdominal aortic aneurysm analysis: latest developments in simulation and integration of machine learning and data-driven approaches. Bioengineering (Basel). 2025;12(5):437. doi: 10.3390/bioengineering12050437
18. Amparore D., Pecoraro A., Piramide F., Verri P., Checcucci E., de Cillis S., Piana A., Burgio M., Di Dio M., Manfredi M., Fiori C., Porpiglia F. Three-dimensional imaging reconstruction of the kidney’s anatomy for a tailored minimally invasive partial nephrectomy: A pilot study. Asian J. Urol. 2022;9(3):263–271. doi: 10.1016/j.ajur.2022.06.003
19. Wigh Lipsø K., Hansen E.S.S., Tougaard R.S., Laustsen C., Ardenkjaer-Larsen J.H. Renal MR angiography and perfusion in the pig using hyperpolarized water. Magn. Reson. Med. 2017;78(3):1131–1135. doi: 10.1002/mrm.26478
20. Lim R., Shapiro M., Wang E., Law M., Babb J.S., Rueff L.E., Jacob J.S., Kim S., Carson R.H., Mulholland T.P., Laub G., Hecht E. 3D time-resolved MR angiography (MRA) of the carotid arteries with time-resolved imaging with stochastic trajectories: comparison with 3D contrast-enhanced bolus-chase MRA and 3D time-of-flight MRA. AJNR Am. J. Neuroradiol. 2008;29(10):1847–1854. doi: 10.3174/ajnr.A1252
21. Eikefjord E., Andersen E., Hodneland E., Zöllner F., Lundervold A., Svarstad E., Rørvik J. Use of 3D DCE-MRI for the estimation of renal perfusion and glomerular filtration rate: an intrasubject comparison of FLASH and KWIC with a comprehensive framework for evaluation. AJR Am. J. Roentgenol. 2015;204(3):W273–W281. doi: 10.2214/AJR.14.13226
22. Serhal A., Aouad P., Serhal M., Serhal A., Aouad P., Serhal M., Pathrose A., Lombardi P., Carr J., Avery R., Edelman R.R. Evaluation of renal allograft vasculature using non-contrast 3D inversion recovery balanced steady-state free precession MRA and 2D quiescent-interval slice-selective MRA. Explor. Res. Hypothesis Med. 2021;6(3):90–98. doi: 10.14218/ERHM.2021.00011
23. Buchanan C.E., Mahmoud H., Cox E.F., McCulloch T., Prestwich B.L., Taal M.W., Selby N.M., Francis, S.T. Quantitative assessment of renal structural and functional changes in chronic kidney disease using multi-parametric magnetic resonance imaging. Nephrol. Dial. Transplant. 2020;35(6):955–964. doi: 10.1093/ndt/gfz129
24. Murali S., Ding H., Adedeji F., Qin C., Obungoloch J., Asllani I., Anazodo U., Ntusi N.A.B., Mammen R., Niendorf T., Adeleke S. Bringing MRI to low- and middle-income countries: Directions, challenges and potential solutions. NMR Biomed. 2024;37(7):e4992. doi: 10.1002/nbm.4992
25. Ternovoy S.K., Sinitsyn V.E., Belichenko O.I., Stukalova O.V. Clinical application of magnetic resonance imaging. Russkiy meditsinskiy zhurnal = Russian Medical Journal. 1996;(7):1. [In Russian].






























