Associations of SLCO1B1 polymorphism with virological efficacy in children with HIV infection
https://doi.org/10.18699/SSMJ20250425
Abstract
The aim of the study was to identify the association between polymorphism of the SLCO1B1 gene and virological efficacy in children receiving lopinavir as part of their antiretroviral therapy.
Material and methods. The study included 48 children with HIV infection aged 4 to 17 years receiving lopinavir as part of their antiretroviral therapy. The first group of 32 patients with virological efficacy included children with undetectable viral load <50 copies/ml, the second group of 16 patients without virological efficacy included children with detectable viral load >50 copies/ml. The libraries were prepared according to the DNA Flex protocol, following the manufacturer’s recommendations (Illumina, USA). Sequencing was performed on the NextSeq 550 platform.
Results. Targeted sequencing of the SLCO1B1 gene region revealed 37 polymorphisms. Analysis of the identified polymorphisms showed that rs4149056 of the SLCO1B1 gene is associated with virological efficacy in children with HIV infection. The carriage of TC/CC genotypes of the rs4149056 polymorphism was registered more often in the group with virological efficacy than without it (odds ratio 0.14, 95% confidence interval 0.01–0.812, p = 0.017).
Conclusions. The carriage of TC/CC genotypes of the rs4149056 polymorphism may serve as a predictor of virological efficacy in children with HIV infection receiving lopinavir therapy in combination antiretroviral therapy.
About the Authors
A. Yu. SambyalovaRussian Federation
Alexandra Yu. Sambyalova
664003, Irkutsk, Timiryazeva st., 16
T. A. Bairova
Russian Federation
Tatyana A. Bairova, doctor of medical sciences
664003, Irkutsk, Timiryazeva st., 16
T. L. Eletskaya
Russian Federation
Tatiana L. Eletskaya
664003, Irkutsk, Timiryazeva st., 16,
664035, Irkutsk, Spartakovskaya st., 11
A. V. Belskikh
Russian Federation
Aleksei V. Belskikh, candidate of chemical sciences
664003, Irkutsk, Timiryazeva st., 16
E. V. Belyaeva
Russian Federation
Elena V. Belyaeva, candidate of biological sciences
664003, Irkutsk, Timiryazeva st., 16
O. A. Ershova
Russian Federation
Oksana A. Ershova, candidate of biological sciences
664003, Irkutsk, Timiryazeva st., 16
N. V. Nemchinova
Russian Federation
Nadezhda V. Nemchinova
664003, Irkutsk, Timiryazeva st., 16
V. V. Sinkov
Russian Federation
Viacheslav V. Sinkov, candidate of medical sciences
664003, Irkutsk, Timiryazeva st., 16
Yu. K. Plotnikova
Russian Federation
Yulia K. Plotnikova, candidate of medical sciences
664035, Irkutsk, Spartakovskaya st., 11
L. V. Rychkova
Russian Federation
Lyubov V. Rychkova, doctor of medical sciences, professor of RAS
664003, Irkutsk, Timiryazeva st., 16
References
1. Hagenbuch B., Meier P.J. Organic anion transporting polypeptides of the OATP/ SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch. 2004;447(5):653–665. doi: 10.1007/s00424-003-1168-y
2. Dragović G., Dimitrijević B., Kušić J., Soldatović I., Jevtović D., Olagunju A., Owen A. Influence of SLCO1B1 polymorphisms on lopinavir C trough in Serbian HIV/AIDS patients. Br. J. Clin. Pharmacol. 2020;86(7):1289–1295. doi: 10.1111/bcp.14230
3. Mo Q., Huang S., Ma J., Zhang J., Su R., Deng Q. Association between SLCO1B1 polymorphism distribution frequency and blood lipid level in Chinese adults. Br. J. Biomed. Sci. 2021;78(1):23–27. doi: 10.1080/09674845.2020.1785692
4. Wu Y., Fang F., Wang Z., Wen P., Fan J. The influence of recipient SLCO1B1 rs2291075 polymorphism on tacrolimus dose-corrected trough concentration in the early period after liver transplantation. Eur. J. Clin. Pharmacol. 2021;77(6):859–867. doi: 10.1007/s00228-020-03058-w
5. National Association of Specialists in Prevention, Diagnosis and Treatment of HIV Infection. Clinical Guidelines “HIV Infection in Children”. 2024. Available at: clck.ru/3MyFA5 [In Russian].
6. Sigaloff K.C., Calis J.C., Geelen S.P., van Vugt M., de Wit T.F. HIV-1-resistance-associated mutations after failure of first-line antiretroviral treatment among children in resource-poor regions: a systematic review. Lancet Infect. Dis. 2011;11(10):769–779. doi: 10.1016/S1473-3099(11)70141-4
7. Zhao Y., Mu W., Harwell J., Zhou H., Sun X., Cheng Y., Li C., Zhang F. Drug resistance profiles among HIV-1-infected children experiencing delayed switch and 12-month efficacy after using second-line antiretroviral therapy: an observational cohort study in rural China. J. Acquir. Immune Defic. Syndr. 2011;58(1):47– 53. doi: 10.1097/QAI.0b013e318229f2a2
8. Waalewijn H., Turkova A., Rakhmanina N., Cressey T.R., Penazzato M., Colbers A., Burger D.M.; Pediatric Antiretroviral Working Group (PAWG). Optimizing pediatric dosing recommendations and treatment management of antiretroviral drugs using therapeutic drug monitoring data in children living with HIV. Ther. Drug Monit. 2019;41(4):431–443. doi: 10.1097/FTD.0000000000000637
9. Sambyalova A.Yu., Bairova T.A., Manaenkova T.L., Rychkova L.V. The role of pharmacogenetics in efficacy and safety of protease inhibitor based therapy in human immunodeficiency virus type (HIV) infection. Acta Biomed. Sci. 2021;6(6-2):113–124. [In Russian]. doi: 10.29413/ABS.2021-6.6-2.12
10. Sambyalova A.Yu., Bairova T.A., Belskikh A.V., Manaenkova T.L., Belyaeva E.V., Ershova O.A., Nemchinova N.V., Plotnikova Yu.K., Kolesnikova L.I., Rychkova L.V. Drug monitoring of antiretroviral drugs in children with perinatal HIV infection. Acta Biomed. Sci. 2024;9(3):102-110. [In Russian]. doi: 10.29413/ABS.2024-9.3.10
11. Sambyalova A.Yu., Bairova T.A., Manaenkova T.L., Belskikh A.V., Belyaeva E.V., Ershova O.A., Kumratov D.V., Paramonov A.I., Plotnikova Yu.K., Kolomeets L.V., Rychkova L.V. Some pharmacogenetic aspects of the ABCB1 gene in lopinavir / ritonavir concentration variability in children with HIV infection: A pilot study. Acta Biomed. Sci. 2022;7(5-1):53–61. [In Russian]. doi: 10.29413/ABS.2022-7.5-1.7
12. Crommentuyn K.M., Kappelhoff B.S., Mulder J.W., Mairuhu A.T., van Gorp E.C., Meenhorst P.L., Huitema A.D., Beijnen J.H. Population pharmacokinetics of lopinavir in combination with ritonavir in HIV-1-infected patients. Br. J. Clin. Pharmacol. 2005;60(4):378–389. doi: 10.1111/j.1365-2125.2005.02455.x
13. Kullak-Ublick G.A., Hagenbuch B., Stieger B., Schteingart C.D., Hofmann A.F., Wolkoff A.W., Meier P.J. Molecular and functional characterization of an organic anion transporting polypeptide cloned from human liver. Gastroenterology. 1995;109(4):1274–1282. doi: 10.1016/0016-5085(95)90588-x
14. Roszkiewicz J., Michałek D., Ryk A., Swacha Z., Szmyd B., Smolewska E. SLCO1B1 variants as predictors of methotrexate-related toxicity in children with juvenile idiopathic arthritis. Scand. J. Rheumatol. 2021;50(3):213–217. doi: 10.1080/03009742.2020.1818821
15. Niemi M., Pasanen M.K., Neuvonen P.J. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol. Rev. 2011;63(1):157–181. doi: 10.1124/pr.110.002857
16. Tirona R.G., Leake B.F., Merino G., Kim R.B. Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European-and African-Americans. J. Biol. Chem. 2001;276(38):35669–35675. doi: 10.1074/jbc.M103792200
17. Pasanen M.K., Neuvonen P.J., Niemi M. Global analysis of genetic variation in SLCO1B1. Pharmacogenomics. 2008;9(1):19–33. doi: 10.2217/14622416.9.1.19
18. National Center for Biotechnology Information, U.S. National Library of Medicine. Available at: clck.ru/3MyHNA
19. Liu X., Ma Q., Zhao Y., Mu W., Sun X., Cheng Y., Zhang H., Ma Y., Zhang F. Impact of single nucleotide polymorphisms on plasma concentrations of efavirenz and lopinavir/ritonavir in Chinese children infected with the human immunodeficiency virus. Pharmacotherapy. 2017;37(9):1073–1080. doi: 10.1002/phar.1988
20. Rakhmanina N.Y., Neely M.N., van Schaik R.H., Gordish-Dressman H.A., Williams K.D., Soldin S.J., van den Anker J.N. CYP3A5, ABCB1, and SLCO1B1 polymorphisms and pharmacokinetics and virologic outcome of lopinavir/ritonavir in HIV-infected children. Ther. Drug Monit. 2011;33(4):417–424. doi: 10.1097/FTD.0b013e318225384f
21. Glass T.R., Rotger M., Telenti A., Decosterd L., Csajka C., Bucher H.C., Günthard H.F., Rickenbach M., Nicca D., Hirschel B., … Swiss HIV Cohort Study. Determinants of sustained viral suppression in HIV-infected patients with self-reported poor adherence to antiretroviral therapy. PLoS One. 2012;7(1):e29186. doi: 10.1371/journal.pone.0029186
22. Lehtisalo M., Taskinen S., Tarkiainen E.K., Neuvonen M., Viinamäki J., Paile-Hyvärinen M., Lilius T.O., Tapaninen T., Backman J.T., Tornio A., Niemi M. A comprehensive pharmacogenomic study indicates roles for SLCO1B1, ABCG2 and SLCO2B1 in rosuvastatin pharmacokinetics. Br. J. Clin. Pharmacol. 2023;89(1):242–252. doi: 10.1111/bcp.15485
23. Phan L., Jin Y., Zhang H., Qiang W., Shekhtman E., Shao D., Revoe D., Villamarin R., Ivanchenko E., Kimura M., … Kattman B.L. “ALFA: Allele Frequency Aggregator”. National Center for Biotechnology Information, U.S. National Library of Medicine, 10 Mar. 2020. Available at: clck.ru/3MyHep
24. National Center for Biotechnology Information, U.S. National Library of Medicine. Available at: clck.ru/3N6beA
25. The Pharmacogenomics Knowledgebase (PharmGKB). Available at: clck.ru/3MyHrW