Ossification of own tissues in dental implantation using autologous bone fragments
https://doi.org/10.18699/SSMJ20250422
Abstract
Aim of the study was to investigate the morphological results of implantation with the introduction of fragments of autologous bone into soft tissues sutured over the device.
Material and methods. The condition of gum tissue in 95 patients before implantation and 4–6 months after the installation of screw dental implants using standard technology (n = 42) or with the placement of fragments of autologous bone, formed during the preparatory procedures, over the implant (n = 47) was study with morphological methods using immunohistochemistry to identify CD68+ cells.
Results. The addition of autologous bone particles to the tissue next to the intraosseous implant promotes the formation of thick and strong bone, reliably isolating the device from the oral cavity, damage during chewing and contamination by microorganisms. 4–6 months after implantation the signs of the inflammatory process (vascular reactions, leukocyte infiltration and formation of a connective tissue capsule) and macrophage response with migration of phagocytes and the formation of giant multinuclear forms are absent in the tissues near the foreign body and remaining bone fragments.
Conclusions. In the case of introducing small fragments of autologous bone, formed during the preparation of the implantation bed, into the soft tissue over the device during surgery, after 4–6 months a dense mass of compact bone with wide osteons and very sparsely located Haversian canals is formed. Bone fragments not included in the bone capsule either lyse with subsequent calcification, or gradually migrate via tissues, even bone, and are eliminated outward. During the formation of a bone dome over the implant, objects similar to dentin may appear.
Keywords
About the Authors
I. V. MaiborodinRussian Federation
Igor V. Maiborodin, doctor of medical sciences, professor
630090, Novosibirsk, Akademika Lavrenteva ave., 8,
630090, Novosibirsk, Nikolaeva st., 12/3
B. K. Sarkisiants
Russian Federation
Boris K. Sarkisiants
630007, Novosibirsk, Sibrevkoma st., 9b
B. V. Sheplev
Russian Federation
Boris V. Sheplev, doctor of medical sciences
630090, Novosibirsk, Nikolaeva st., 12/3
A. A. Shevela
Russian Federation
Aleksandr A. Shevela, doctor of medical sciences
630007, Novosibirsk, Sibrevkoma st., 9b
References
1. Sharma S., Bano S., Ghosh A.S., Mandal M., Kim H.W., Dey T., Kundu S.C. Silk fibroin nanoparticles support in vitro sustained antibiotic release and osteogenesis on titanium surface. Nanomedicine. 2016;12(5):1193–1204. doi: 10.1016/j.nano.2015.12.385
2. Caparrós C., Ortiz-Hernandez M., Molmeneu M., Punset M., Calero J.A., Aparicio C., Fernández-Fairén M., Perez R., Gil F.J. Bioactive macroporous titanium implants highly interconnected. J. Mater. Sci. Mater. Med. 2016;27(10):151. doi: 10.1007/s10856-016-5764-8
3. Maiborodin I.V., Maiborodina V.I., Sheplev B.V., Sharkeev Yu.P., Sedelnikova M.B., Pavlov V.V., Bazlov V.A., Anastasieva E.A., Efimenko M.V., Kirilova I.А., Korytkin A.A. Morphological assessment of osseointegration of titanium implants with Ag- and Zn-containing calcium phosphate coatings. Travmatologiya i ortopediya Rossii = Traumatology and Orthopedics of Russia. 2025;31(1):85–97. [In Russian]. doi: 10.17816/2311-2905-17604
4. El-Wassefy N.A., Reicha F.M., Aref N.S. Electro-chemical deposition of nano hydroxyapatite-zinc coating on titanium metal substrate. Int. J. Implant. Dent. 2017;3(1):39. doi: 10.1186/s40729-017-0095-1
5. Nikolaev N.S., Lyubimova L.V., Pchelova N.N., Preobrazhenskaya E.V., Alekseeva A.V. Treatment of periprosthetic infection with silver-doped implants based on two-dimensional ordered linear chain carbon. Travmatologiya i ortopediya Rossii = Traumatology and Orthopedics of Russia. 2019;25(4):98–108. [In Russian]. doi: 10.21823/2311-2905-2019-25-4-98-108
6. Liu R., Memarzadeh K., Chang B., Zhang Y., Ma Z., Allaker R.P., Ren L., Yang K. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis. Sci. Rep. 2016;6:29985. doi: 10.1038/srep29985
7. Heo D.N., Ko W.K., Lee H.R., Lee S.J., Lee D., Um S.H., Lee J.H., Woo Y.H., Zhang L.G., Lee D.W., Kwon I.K. Titanium dental implants surface-immobilized with gold nanoparticles as osteoinductive agents for rapid osseointegration. J. Colloid Interface Sci. 2016:469:129–137. doi: 10.1016/j.jcis.2016.02.022
8. Maiborodin I., Shevela A., Matveeva V., Morozov V., Toder M., Krasil’nikov S., Koryakina A., Shevela A., Yanushevich O. First experimental study of the influence of extracellular vesicles derived from multipotent stromal cells on osseointegration of dental implants. Int. J. Mol. Sci. 2021;22(16):8774. doi: 10.3390/ijms22168774
9. Maiborodin I.V., Shevela A.A., Marchukov S.V., Morozov V.V., Matveeva V.A., Maiborodina V.I., Novikov A.M., Tornuev Yu.V., Churin B.V., Shevela A.I. Prolongation of cleansing damaged tissues from detritus using exosomes of multipotent stromal cells. Novosti khirurgii = News of Surgery. 2021;29(4):401–411. [In Russian]. doi: 10.18484/2305-0047.2021.4.401
10. Schulze-Späte U., Dietrich T., Wu C., Wang K., Hasturk H., Dibart S. Systemic vitamin D supplementation and local bone formation after maxillary sinus augmentation - a randomized, double-blind, placebo-controlled clinical investigation. Clin. Oral Implants Res. 2016;27(6):701–706. doi: 10.1111/clr.12641
11. Maiborodin I.V., Sarkisiants B.K., Sheplev B.V., Maiborodina V.I., Shevela A.A. Ossification of the gum over intraosseal implant. Arkhiv patologii = Archive of Pathology. 2024;86(6):70–73. [In Russian]. doi: 10.17116/patol20248606170
12. Zhang Y., Al-Maawi S., Wang X., Sader R., Kirkpatrick C., Ghanaati S. Biomaterial-induced multinucleated giant cells express proinflammatory signaling molecules: A histological study in humans. J. Biomed. Mater. Res. A. 2019;107(4):780–790. doi: 10.1002/jbm.a.36594
13. Tanneberger A.M., Al-Maawi S., Herrera-Vizcaíno C., Orlowska A., Kubesch A., Sader R., Kirkpatrick C.J., Ghanaati S. Multinucleated giant cells within the in vivo implantation bed of a collagen-based biomaterial determine its degradation pattern. Clin. Oral Investig. 2021;25(3):859–873. doi: 10.1007/s00784-020-03373-7
14. Vautrin M., Moerenhout K., Udin G., Borens O. Perioperative contamination of orthopaedic polyethylene implants, targeting devices and arthroscopes. Experts’ decision tree and literature review. J. Bone Jt. Infect. 2019;4(2):65–71. doi: 10.7150/jbji.30613
15. Wang D., Wang A., Wu F., Qiu X., Li Y., Chu J., Huang W.C., Xu K., Gong X., Li S. Sox10+ adult stem cells contribute to biomaterial encapsulation and microvascularization. Sci. Rep. 2017;7:40295. doi: 10.1038/srep40295
16. Zhang Y., Zhang H., Xiao Z., Yuan G., Yang G. IPO7 Promotes odontoblastic differentiation and inhibits osteoblastic differentiation through regulation of RUNX2 expression and translocation. Stem. Cells. 2022;40(11):1020–1030. doi: 10.1093/stmcls/sxac055